adenosine diphosphate has been researched along with Cardiac Remodeling, Ventricular in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Agrimi, J; Bottomley, PA; Dey, S; Gabr, R; Gerstenblith, G; Gupta, A; Keceli, G; Lai, S; Leppo, M; O'Rourke, B; Paolocci, N; Schär, M; Sourdon, J; Steenbergen, C; Stuber, A; Tocchetti, CG; Wang, Y; Weiss, RG; Yanek, LR; Zhang, Y | 1 |
de Wijs-Meijler, D; Duncker, DJ; Jan Danser, AH; Jankowski, J; Jankowski, V; Lankhuizen, I; Merkus, D; Zhou, Z | 1 |
Chen, A; Chen, M; Chen, X; Dai, W; Dong, Q; Li, W; Li, X; Ou, C; Shen, Y | 1 |
Bache, RJ; Bransford, TL; Feygin, J; From, AH; Hu, Q; Lee, J; Liu, J; Mansoor, A; Ochiai, K; Swingen, C; Wang, X; Zeng, L; Zhang, G; Zhang, J | 1 |
Bache, RJ; Godinot, C; Gong, G; Ishibashi, Y; Liu, J; Murakami, Y; Ochiai, K; Prody, C; Wang, C; Zhang, J | 1 |
5 other study(ies) available for adenosine diphosphate and Cardiac Remodeling, Ventricular
Article | Year |
---|---|
Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure.
Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Creatine Kinase; Creatine Kinase, Mitochondrial Form; Energy Metabolism; Heart Failure; Humans; Hypertrophy, Left Ventricular; Mice; Myocardium; Reactive Oxygen Species; Ventricular Remodeling | 2022 |
Blunted coronary vasodilator response to uridine adenosine tetraphosphate in post-infarct remodeled myocardium is due to reduced P1 receptor activation.
Topics: Adenosine A2 Receptor Antagonists; Adenosine Diphosphate; Animals; Coronary Vessels; Dinucleoside Phosphates; Heart; Myocardial Infarction; Myocardium; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Purinergic P2Y Receptor Antagonists; Pyridoxal Phosphate; Pyrimidines; Receptors, Purinergic; Receptors, Purinergic P1; Theophylline; Triazoles; Vasodilator Agents; Ventricular Remodeling | 2013 |
Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction.
Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Aorta, Abdominal; Arterial Pressure; Cardiovascular Agents; Constriction; Disease Models, Animal; Energy Metabolism; Gene Expression Regulation; Hypertrophy, Left Ventricular; Male; Myocardium; Neuropeptide Y; Oxidative Stress; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Neuropeptide Y; Signal Transduction; Trimetazidine; Ventricular Function, Left; Ventricular Remodeling | 2016 |
Profound bioenergetic abnormalities in peri-infarct myocardial regions.
Topics: Adenosine Diphosphate; Adenosine Triphosphatases; Adenosine Triphosphate; Animals; Blotting, Western; Citrate (si)-Synthase; Collagen; Coronary Circulation; Coronary Vessels; Energy Metabolism; Hemodynamics; Ligation; Magnetic Resonance Spectroscopy; Mitochondria, Heart; Myocardial Infarction; Myocardium; Myoglobin; Oxygen Consumption; Phosphocreatine; Swine; Ventricular Remodeling | 2006 |
Mitochondrial ATPase and high-energy phosphates in failing hearts.
Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Body Weight; Cardiac Pacing, Artificial; Coronary Circulation; Disease Models, Animal; Dobutamine; Dopamine; Heart Failure; Hemodynamics; Infusions, Intravenous; Magnetic Resonance Spectroscopy; Mitochondria, Heart; Myocardial Infarction; Organ Size; Phosphocreatine; Protein Subunits; Proton-Translocating ATPases; Swine; Ventricular Remodeling | 2001 |