adenosine-5--o-(3-thiotriphosphate) and Leukemia--Myeloid--Acute

adenosine-5--o-(3-thiotriphosphate) has been researched along with Leukemia--Myeloid--Acute* in 2 studies

Other Studies

2 other study(ies) available for adenosine-5--o-(3-thiotriphosphate) and Leukemia--Myeloid--Acute

ArticleYear
Extracellular Adenine Nucleotides and Adenosine Modulate the Growth and Survival of THP-1 Leukemia Cells.
    International journal of molecular sciences, 2020, Jun-22, Volume: 21, Issue:12

    A new approach to improve the effectiveness of acute myeloid leukemia (AML) treatment is to use the properties of purinergic signaling molecules secreted into the bone marrow milieu in response to leukemic cell growth. Therefore, our study aimed to evaluate the effects of extracellular adenine nucleotides and adenosine on the growth and death parameters in the leukemic THP-1 cell line. Cells were exposed to ATP, ADP, AMP, adenosine and nonhydrolyzable analogues of ATP and ADP (ATPγS and ADPβS) in a 1-1000 μM broad concentration range. The basal mRNA expression of the P1 and P2 receptors was evaluated by real-time PCR. Changes in the processes of cell growth and death were assessed by flow cytometry analysis of proliferation, cell cycle and apoptosis. Chemotaxis toward stromal cell-derived factor-1 (SDF-1) was performed using the modified Boyden chamber assay, and chemokine receptor type 4 (CXCR4) surface expression was quantified by flow cytometry. We indicated several antileukemic actions. High micromolar concentrations (100-1000 μM) of extracellular adenine nucleotides and adenosine inhibit the growth of cells by arresting the cell cycle and/or inducing apoptosis. ATP is characterized by the highest potency and widest range of effects, and is responsible for the cell cycle arrest and the apoptosis induction. Compared to ATP, the effect of ADP is slightly weaker. Adenosine mostly has a cytotoxic effect, with the induction of apoptosis. The last studied nucleotide, AMP, demonstrated only a weak cytotoxic effect without affecting the cell cycle. In addition, cell migration towards SDF-1 was inhibited by low micromolar concentrations (10 μM). One of the reasons for this action of ATPγS and adenosine was a reduction in CXCR4 surface expression, but this only partially explains the mechanism of antimigratory action. In summary, extracellular adenine nucleotides and adenosine inhibit THP-1 cell growth, cause death of cells and modulate the functioning of the SDF-1/CXCR4 axis. Thus, they negatively affect the processes that are responsible for the progression of AML and the difficulties in AML treatment.

    Topics: Adenosine; Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Affinity Labels; Apoptosis; Cell Cycle; Cell Movement; Cell Proliferation; Extracellular Matrix; Humans; Leukemia, Myeloid, Acute; Thionucleotides; Tumor Cells, Cultured

2020
The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides.
    European journal of biochemistry, 1988, Jul-15, Volume: 175, Issue:1

    NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.

    Topics: Adenine Nucleotides; Adenosine Triphosphate; Arachidonic Acid; Arachidonic Acids; Cell Line; GTP-Binding Proteins; Guanine Nucleotides; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Guanosine Triphosphate; Humans; Leukemia, Myeloid, Acute; NADH, NADPH Oxidoreductases; NADPH Oxidases; Phosphotransferases; Superoxides; Thionucleotides

1988