adenosine-5--o-(3-thiotriphosphate) has been researched along with Inflammation* in 5 studies
5 other study(ies) available for adenosine-5--o-(3-thiotriphosphate) and Inflammation
Article | Year |
---|---|
Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages.
Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury. Topics: Adenosine Triphosphate; Cells, Cultured; Cytokines; Gene Expression Regulation; Humans; Inflammation; Intercellular Signaling Peptides and Proteins; Macrophages; Purinergic P2X Receptor Antagonists; Receptors, Purinergic P2X7; RNA, Messenger | 2014 |
ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation.
Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2) release remain unclear.. Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox), Jak2, STAT3, and cPLA(2) markedly reduced ATPγS-induced COX-2 expression and PGE(2) production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox) translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells.. Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2) production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2) signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies. Topics: Adenosine Triphosphate; Cell Line; Cell Line, Tumor; Cyclooxygenase 2; Dinoprostone; Gene Expression Regulation; Humans; Inflammation; Lung; NADPH Oxidases; Reactive Oxygen Species; Receptors, Purinergic P2; Signal Transduction; STAT3 Transcription Factor; Transcriptional Activation | 2013 |
ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling.
Adenosine 5'-triphosphate (ATP) affects multiple intra- and extracellular processes, including vascular tone and immune responses. Microvascular endothelial cells (EC) play a central role in inflammation by recruitment of inflammatory cells from blood to tissues. We hypothesized that ATP (secreted by neurons and/or released after perturbation of cutaneous cells) may influence secretion of inflammatory messengers by dermal microvascular EC through actions on purinergic P2 receptors. Addition of the hydrolysis-resistant ATP analogue, adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), to subconfluent cultures of the human microvascular endothelial cell-1 (HMEC-1) cell line led to a dose- and time-dependent increase in release of IL-6, IL-8, monocyte chemoattractant protein-1, and growth-regulated oncogene alpha. Both ATPgammaS-induced release and basal production of these proteins were significantly inhibited by the purinergic antagonists pyridoxal-5'-phosphate-6-azophenyl-2',5'-disulfonic acid (PPADS), pyridoxal-5'-phosphate-6(2'-naphthylazo-6-nitro-4',8'-disulfonate), and suramin. ATPgammaS increased expression of intercellular adhesion molecule-1 (ICAM-1), whereas suramin and PPADS decreased both ATPgammaS-induced and basal ICAM-1 expression. Using PCR, we found that HMEC-1 strongly express mRNA for the P2X(4), P2X(5), P2X(7), P2Y(2), and P2Y(11) receptors and weakly express mRNA for P2X(1) and P2X(3) receptors. Purinergic nucleotides may mediate acute inflammation in the skin and thus contribute to physiological and pathophysiological inflammation. For example, ATP may contribute to both the vasodilation and the inflammation associated with rosacea. Topics: Adenosine Triphosphate; Apoptosis; Cell Line; Chemokine CCL2; Chemokine CXCL1; Chemokines, CXC; Endothelial Cells; Humans; Inflammation; Inflammation Mediators; Intercellular Adhesion Molecule-1; Intercellular Signaling Peptides and Proteins; Interleukin-6; Interleukin-8; Pyridoxal Phosphate; Receptors, Purinergic; Receptors, Purinergic P2; Receptors, Purinergic P2X; Signal Transduction; Skin; Suramin | 2006 |
"Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.
The activation of Toll-like receptors (TLRs) by lipopolysaccharide or other ligands evokes a proinflammatory immune response, which is not only capable of clearing invading pathogens but can also inflict damage to host tissues. It is therefore important to prevent an overshoot of the TLR-induced response where necessary, and here we show that extracellular ATP is capable of doing this in human monocytes. Using reverse transcription-PCR, we showed that monocytes express P2Y(1), P2Y(2), P2Y(4), P2Y(11), and P2Y(13) receptors, as well as several P2X receptors. To elucidate the function of these receptors, we first studied Ca(2+) signaling in single cells. ATP or UTP induced a biphasic increase in cytosolic Ca(2+), which corresponded to internal Ca(2+) release followed by activation of store-operated Ca(2+) entry. The evoked Ca(2+) signals stimulated Ca(2+)-activated K(+) channels, producing transient membrane hyperpolarization. In addition, ATP promoted cytoskeleton reorganization and cell migration; however, unlike chemoattractants, the migration was non-directional and further analysis showed that ATP did not activate Akt, essential for sensing gradients. When TLR2, TLR4, or TLR2/6 were stimulated with their respective ligands, ATPgammaS profoundly inhibited secretion of proinflammatory cytokines (tumor necrosis factor-alpha and monocyte chemoattractant protein-1) but increased the production of interleukin-10, an anti-inflammatory cytokine. In radioimmune assays, we found that ATP (or ATPgammaS) strongly increased cAMP levels, and, moreover, the TLR-response was inhibited by forskolin, whereas UTP neither increased cAMP nor inhibited the TLR-response. Thus, our data suggest that ATP promotes non-directional migration and, importantly, acts as a "host tissue damage" signal via the G(s) protein-coupled P2Y(11) receptor and increased cAMP to negatively regulate TLR signaling. Topics: Adenosine Triphosphate; Animals; Anti-Inflammatory Agents; Blotting, Western; Calcium; Cell Movement; Cell Survival; Cyclic AMP; Cytokines; Cytoskeleton; Dose-Response Relationship, Drug; Egtazic Acid; Gene Expression Regulation; Humans; Inflammation; Influenza A virus; Interleukin-10; Ligands; Lipopolysaccharide Receptors; Membrane Glycoproteins; Models, Biological; Monocytes; Patch-Clamp Techniques; Potassium; Radioimmunoassay; Receptors, Cell Surface; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Toll-Like Receptor 2; Toll-Like Receptor 4; Toll-Like Receptor 6; Toll-Like Receptors; Uridine Triphosphate | 2005 |
Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca(++) mobilization and actin reorganization in human eosinophils.
Eosinophils are major effector cells in cellular inflammatory conditions such as parasitic infections, atopic diseases, bullous dermatoses, and vasculitis. Biological activities of adenosine triphosphate (ATP) were characterized in human eosinophils and compared with those of other eosinophil activators such as complement fragment product C5a, platelet-activating factor (PAF), and eotaxin. ATP initiated production of reactive oxygen metabolites, as demonstrated by lucigenin-dependent chemiluminescence. Furthermore, ATP caused up-regulation of the integrin CD11b. In addition, fluorescence microscope measurements labeled with fura-2 (1-[2-(5-carboxy-oxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2' -amino-5' -methyl-phenoxy)-ethane-N, N, N, N'-tetraacetic acid, pentaacetoxymethyl ester) eosinophils in the presence or absence of ethyleneglycotetraacetic acid (EGTA) indicated that there was Ca(++) mobilization from intracellular stores by ATP. Flow cytometric studies showed transient actin polymerization upon stimulation with ATP and its stable analogues adenosine 5'-0-(3-thiotriphosphate) and 2-methylthioadenosine triphosphate tetrasodium (met-ATP). The reactions induced by ATP were comparable to those obtained by C5a, PAF, and eotaxin. Production of reactive oxygen metabolites and actin polymerization after stimulation with ATP was inhibited by pertussis toxin, which indicated involvement of receptor-coupled guanine nucleotide-binding proteins (G(i) proteins). In addition, experiments with oxidized ATP also suggest involvement of P2X receptors in this activation process. The results show that ATP is a strong activator of eosinophils and has biological activity comparable to those of the eosinophil chemotaxins C5a, PAF, and eotaxin. The findings strongly suggest a role of ATP in the pathogenesis of eosinophilic inflammation as an activator of proinflammatory effector functions. Topics: Actin Cytoskeleton; Actins; Adenosine Triphosphate; Calcium Signaling; Chemokine CCL11; Chemokines, CC; Complement C5a; Cytokines; Egtazic Acid; Eosinophils; Flow Cytometry; Free Radicals; Fura-2; Humans; Inflammation; Macrophage-1 Antigen; Pertussis Toxin; Platelet Activating Factor; Reactive Oxygen Species; Receptors, Purinergic P2; Respiratory Burst; Thionucleotides; Up-Regulation; Virulence Factors, Bordetella | 2000 |