adenosine-5--(n-ethylcarboxamide) and Infertility--Male

adenosine-5--(n-ethylcarboxamide) has been researched along with Infertility--Male* in 2 studies

Other Studies

2 other study(ies) available for adenosine-5--(n-ethylcarboxamide) and Infertility--Male

ArticleYear
Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells.
    Molecular human reproduction, 2021, 07-01, Volume: 27, Issue:7

    Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.

    Topics: 5'-Nucleotidase; Adenosine; Adenosine Triphosphate; Adenosine-5'-(N-ethylcarboxamide); Adult; Aminopyridines; Animals; Apyrase; Cells, Cultured; Cytokines; GPI-Linked Proteins; Humans; Infertility, Male; Inflammation; Male; Mice; Mice, Inbred C57BL; Middle Aged; Receptor, Adenosine A2B; Receptors, Purinergic P1; RNA Interference; RNA, Small Interfering; Testis

2021
Sperm motility and kinetics of dynein ATPase in astheno- and normozoospermic samples after stimulation with adenosine and its analogues.
    Human reproduction (Oxford, England), 1994, Volume: 9, Issue:8

    We tested the effects of adenosine and 2-deoxyadenosine on the activation of human spermatozoa. In the asthenozoospermic group of patients adenosine produces an increase in sperm motility from 33.3 +/- 2.1% to 42.1 +/- 3.4%, progressive motility from 22.5 +/- 1.3% to 28.6 +/- 1.7% and forward progression rating from 2.1 +/- 0.2% to 2.8 +/- 0.1%. 2-Deoxyadenosine stimulated asthenozoospermic samples to a greater degree than adenosine. Sperm motility rose to 48.9 +/- 3.4%, progressive motility to 32.1 +/- 3.4% and forward progression rating to 3.0 +/- 0.1% following stimulation with 2-deoxy-adenosine. The kinetic parameters and basic characteristics of dynein ATPase were determined. The maximum activity of dynein ATPase, Vmax, was significantly different (P < 0.001) for asthenozoospermic and normozoospermic samples: 6.46 +/- 2.1 nmol Pi/mg/min and 16.99 +/- 3.7 nmol Pi/mg/min respectively. However, the enzyme affinity for ATP was not different. Stimulation of asthenozoospermic samples with adenosine and 2-deoxyadenosine caused an increase of Vmax (70-90% and 90-110% respectively) and no significant change in KM was observed. In order to block the nucleoside transporter and to eliminate the action of adenosine inside the cell, dipyridamole was used but the effects of adenosine were not neutralized. 5'-(N-ethylcarboxy-amido)-adenosine showed effects similar to those of adenosine, even when applied in 1 microM concentration. These results indicate that adenosine and its analogues stimulate sperm motility and activity of dynein ATPase, most probably via A2 receptors.

    Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Deoxyadenosines; Dipyridamole; Dyneins; Humans; Infertility, Male; Kinetics; Male; Oligospermia; Sperm Motility; Spermatozoa

1994