adenosine-3--5--cyclic-phosphorothioate has been researched along with Pain* in 2 studies
2 other study(ies) available for adenosine-3--5--cyclic-phosphorothioate and Pain
Article | Year |
---|---|
Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain.
The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 μl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain. Topics: Animals; Bone Neoplasms; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Estrous Cycle; Female; Ganglia, Spinal; Hot Temperature; Hyperalgesia; Neoplasm Transplantation; Pain; Protein Kinase Inhibitors; Random Allocation; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Spinal Cord; Thionucleotides; Time Factors; Touch | 2014 |
PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior.
The laterocapsular division of the central nucleus of the amygdala (CeLC) has emerged as an important site of pain-related plasticity and pain modulation. Glutamate and neuropeptide receptors in the CeLC contribute to synaptic and behavioral changes in the arthritis pain model, but the intracellular signaling pathways remain to be determined. This study addressed the role of PKA, PKC, and ERK in the CeLC. Adult male Sprague-Dawley rats were used in all experiments. Whole-cell patch-clamp recordings of CeLC neurons were made in brain slices from normal rats and from rats with a kaolin/carrageenan-induced monoarthritis in the knee (6 h postinduction). Membrane-permeable inhibitors of PKA (KT5720, 1 microM; cAMPS-Rp, 10 microM) and ERK (U0126, 1 microM) activation inhibited synaptic plasticity in slices from arthritic rats but had no effect on normal transmission in control slices. A PKC inhibitor (GF109203x, 1 microM) and an inactive structural analogue of U0126 (U0124, 1 microM) had no effect. The NMDA receptor-mediated synaptic component was inhibited by KT5720 or U0126; their combined application had additive effects. U0126 did not inhibit synaptic facilitation by forskolin-induced PKA-activation. Administration of KT5720 (100 microM, concentration in microdialysis probe) or U0126 (100 microM) into the CeLC, but not striatum (placement control), inhibited audible and ultrasonic vocalizations and spinal reflexes of arthritic rats but had no effect in normal animals. GF109203x (100 microM) and U0124 (100 microM) did not affect pain behavior. The data suggest that in the amygdala PKA and ERK, but not PKC, contribute to pain-related synaptic facilitation and behavior by increasing NMDA receptor function through independent signaling pathways. Topics: Amygdala; Animals; Arthritis; Behavior; Butadienes; Carbazoles; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Indoles; Male; Maleimides; Neuronal Plasticity; Neurons; Nitriles; Pain; Protein Kinase C; Protein Kinase Inhibitors; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Thionucleotides | 2008 |