Page last updated: 2024-10-16

adenine and Osteoporosis

adenine has been researched along with Osteoporosis in 20 studies

Osteoporosis: Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.

Research Excerpts

ExcerptRelevanceReference
"Tenofovir alafenamide (TAF) has recently been approved for chronic hepatitis B (CHB)."8.95Tenofovir alafenamide as compared to tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics. ( Hsu, YC; Nguyen, MH; Wei, MT, 2017)
"Increased risk of defective urinary phosphate reabsorption and osteoporosis has been reported in HIV and chronic hepatitis B (CHB) patients treated with tenofovir disoproxil fumarate (TDF)."7.81Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling. ( Bae, HS; Chan, LS; Chang, M; Fong, TL; Huh, B; Lee, S; Lim, C; Shinada, S; Tien, C; Xu, JJ, 2015)
"In human immunodeficiency virus (HIV)-infected patients, tenofovir disoproxil fumarate (TDF) may cause hypophosphatemia leading to osteomalacia due to renal phosphate wasting."7.80Fibroblast growth factor 23 is elevated in tenofovir-related hypophosphatemia. ( Holmes, DT; Jiang, SY; Kendler, DL; Saeedi, R, 2014)
"We performed a two-centre randomized pilot study in virologically suppressed HIV-infected patients receiving tenofovir with osteopenia/osteoporosis (OsteoTDF study, ClinicalTrials."5.19Improvement in bone mineral density after switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: two-centre randomized pilot study (OsteoTDF study). ( Bonjoch, A; Clotet, B; Domingo, P; Echeverría, P; Escrig, R; Gutiérrez, M; Mateo, G; Negredo, E; Pérez-Álvarez, N; Puig, J, 2014)
"Tenofovir alafenamide (TAF) has recently been approved for chronic hepatitis B (CHB)."4.95Tenofovir alafenamide as compared to tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics. ( Hsu, YC; Nguyen, MH; Wei, MT, 2017)
"Increased risk of defective urinary phosphate reabsorption and osteoporosis has been reported in HIV and chronic hepatitis B (CHB) patients treated with tenofovir disoproxil fumarate (TDF)."3.81Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling. ( Bae, HS; Chan, LS; Chang, M; Fong, TL; Huh, B; Lee, S; Lim, C; Shinada, S; Tien, C; Xu, JJ, 2015)
"In human immunodeficiency virus (HIV)-infected patients, tenofovir disoproxil fumarate (TDF) may cause hypophosphatemia leading to osteomalacia due to renal phosphate wasting."3.80Fibroblast growth factor 23 is elevated in tenofovir-related hypophosphatemia. ( Holmes, DT; Jiang, SY; Kendler, DL; Saeedi, R, 2014)
"Osteoporosis is a systemic disease in which bone mass decreases, leading to an increased risk of bone fragility and fracture."3.01The Role of m6A in Osteoporosis and the Differentiation of Mesenchymal Stem Cells into Osteoblasts and Adipocytes. ( Deng, J; Guan, Z; Lin, J; Liu, P; Tao, KT; Wang, D; Zeng, H; Zhang, W, 2023)
"Tenofovir disoproxil fumarate is the first-line antiviral therapy for chronic viral hepatitis B, but long-term use is associated with renal failure and hypophosphatemic osteomalacia."2.82Tenofovir-induced osteopenia and hyperparathyroidism: A case report and literature review. ( Li, L; Ma, W; Wei, D; Ye, P; Zeng, J, 2022)
"The probability of bone fractures and time to first fracture were not different across components."2.76Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG ( Daar, ES; Ha, B; Jahed, NC; Kitch, D; McComsey, GA; Melbourne, K; Myers, L; Sax, PE; Tebas, P; Tierney, C, 2011)
"Rhein is an anthraquinone compound isolated from the medicinal plant rhubarb and mainly used in the clinical treatment of diabetic nephropathy."1.46Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. ( Cao, W; Duan, A; Lin, W; Liu, L; Liu, Z; Yin, S; Zhang, Q, 2017)
"The adenine-treated rats were divided into the following 3 groups, that is, the group experienced no treatment (control), the group given our Chinese herbal medicine (HAO), and the group given vitamin D3 (VD3) medication."1.33Effects of the Chinese herbal medicine based on Hachimi-jio-gan in male rats with the adenine-induced osteopenia. ( Gao, M; Guo, L; Guo, Y; Ishida, T; Kanehara, M; Ogirima, T; Tano, K; Wang, X; Zhang, Y, 2005)

Research

Studies (20)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (15.00)29.6817
2010's14 (70.00)24.3611
2020's3 (15.00)2.80

Authors

AuthorsStudies
Zhang, W2
Tao, KT1
Lin, J1
Liu, P1
Guan, Z1
Deng, J1
Wang, D2
Zeng, H1
Zeng, J1
Ye, P1
Wei, D1
Li, L5
Ma, W1
Halim, AA1
Alsayed, B1
Embarak, S1
Yaseen, T1
Dabbous, S1
Fontaine, O1
Dueluzeau, R1
Raibaud, P1
Chabanet, C1
Popoff, MR1
Badoual, J1
Gabilan, JC1
Andremont, A1
Gómez, L1
Andrés, S1
Sánchez, J1
Alonso, JM1
Rey, J1
López, F1
Jiménez, A1
Yan, Z1
Zhou, L1
Zhao, Y3
Wang, J6
Huang, L2
Hu, K1
Liu, H4
Wang, H3
Guo, Z1
Song, Y1
Huang, H4
Yang, R1
Owen, TW1
Al-Kaysi, RO1
Bardeen, CJ1
Cheng, Q1
Wu, S1
Cheng, T1
Zhou, X1
Wang, B4
Zhang, Q5
Wu, X2
Yao, Y3
Ochiai, T1
Ishiguro, H2
Nakano, R2
Kubota, Y2
Hara, M1
Sunada, K1
Hashimoto, K1
Kajioka, J1
Fujishima, A1
Jiao, J3
Gai, QY3
Wang, W2
Zang, YP2
Niu, LL2
Fu, YJ3
Wang, X5
Yao, LP1
Qin, QP1
Wang, ZY1
Liu, J4
Aleksic Sabo, V1
Knezevic, P1
Borges-Argáez, R1
Chan-Balan, R1
Cetina-Montejo, L1
Ayora-Talavera, G1
Sansores-Peraza, P1
Gómez-Carballo, J1
Cáceres-Farfán, M1
Jang, J1
Akin, D1
Bashir, R1
Yu, Z1
Zhu, J2
Jiang, H1
He, C2
Xiao, Z1
Xu, J2
Sun, Q1
Han, D1
Lei, H1
Zhao, K2
Zhu, L1
Li, X4
Fu, H2
Wilson, BK1
Step, DL1
Maxwell, CL1
Gifford, CA1
Richards, CJ1
Krehbiel, CR1
Warner, JM1
Doerr, AJ1
Erickson, GE1
Guretzky, JA1
Rasby, RJ1
Watson, AK1
Klopfenstein, TJ1
Sun, Y4
Liu, Z4
Pham, TD1
Lee, BK1
Yang, FC1
Wu, KH1
Lin, WP1
Hu, MK1
Lin, L3
Shao, J1
Sun, M1
Xu, G1
Zhang, X6
Xu, N1
Wang, R1
Liu, S2
He, H1
Dong, X2
Yang, M2
Yang, Q1
Duan, S1
Yu, Y2
Han, J2
Zhang, C3
Chen, L2
Yang, X1
Li, W3
Wang, T2
Campbell, DA1
Gao, K1
Zager, RA1
Johnson, ACM1
Guillem, A1
Keyser, J1
Singh, B1
Steubl, D1
Schneider, MP1
Meiselbach, H1
Nadal, J1
Schmid, MC1
Saritas, T1
Krane, V1
Sommerer, C1
Baid-Agrawal, S1
Voelkl, J1
Kotsis, F1
Köttgen, A1
Eckardt, KU1
Scherberich, JE1
Li, H4
Yao, L2
Sun, L4
Zhu, Z1
Naren, N1
Zhang, XX2
Gentile, GL1
Rupert, AS1
Carrasco, LI1
Garcia, EM1
Kumar, NG1
Walsh, SW1
Jefferson, KK1
Guest, RL1
Samé Guerra, D1
Wissler, M1
Grimm, J1
Silhavy, TJ1
Lee, JH2
Yoo, JS1
Kim, Y1
Kim, JS2
Lee, EJ1
Roe, JH1
Delorme, M1
Bouchard, PA1
Simon, M1
Simard, S1
Lellouche, F1
D'Urzo, KA1
Mok, F1
D'Urzo, AD1
Koneru, B1
Lopez, G1
Farooqi, A1
Conkrite, KL1
Nguyen, TH1
Macha, SJ1
Modi, A1
Rokita, JL1
Urias, E1
Hindle, A1
Davidson, H1
Mccoy, K1
Nance, J1
Yazdani, V1
Irwin, MS1
Yang, S1
Wheeler, DA1
Maris, JM1
Diskin, SJ1
Reynolds, CP1
Abhilash, L1
Kalliyil, A1
Sheeba, V1
Hartley, AM2
Meunier, B2
Pinotsis, N1
Maréchal, A2
Xu, JY1
Genko, N1
Haraux, F1
Rich, PR1
Kamalanathan, M1
Doyle, SM1
Xu, C1
Achberger, AM1
Wade, TL1
Schwehr, K1
Santschi, PH1
Sylvan, JB1
Quigg, A1
Leong, W1
Xu, W2
Gao, S1
Zhai, X1
Wang, C3
Gilson, E1
Ye, J1
Lu, Y1
Yan, R1
Zhang, Y7
Hu, Z1
You, Q1
Cai, Q1
Yang, D1
Gu, S1
Dai, H1
Zhao, X1
Gui, C1
Gui, J1
Wu, PK1
Hong, SK1
Starenki, D1
Oshima, K1
Shao, H1
Gestwicki, JE1
Tsai, S1
Park, JI1
Wang, Y8
Zhao, R1
Gu, Z1
Dong, C2
Guo, G1
Barrett, HE1
Meester, EJ1
van Gaalen, K1
van der Heiden, K1
Krenning, BJ1
Beekman, FJ1
de Blois, E1
de Swart, J1
Verhagen, HJ1
Maina, T1
Nock, BA1
Norenberg, JP1
de Jong, M1
Gijsen, FJH1
Bernsen, MR1
Martínez-Milla, J1
Galán-Arriola, C1
Carnero, M1
Cobiella, J1
Pérez-Camargo, D1
Bautista-Hernández, V1
Rigol, M1
Solanes, N1
Villena-Gutierrez, R1
Lobo, M1
Mateo, J1
Vilchez-Tschischke, JP1
Salinas, B1
Cussó, L1
López, GJ1
Fuster, V1
Desco, M1
Sanchez-González, J1
Ibanez, B1
van den Berg, P1
Schweitzer, DH1
van Haard, PMM1
Geusens, PP1
van den Bergh, JP1
Zhu, X1
Huang, X2
Xu, H2
Yang, G2
Lin, Z1
Salem, HF1
Nafady, MM1
Kharshoum, RM1
Abd El-Ghafar, OA1
Farouk, HO1
Domiciano, D1
Nery, FC1
de Carvalho, PA1
Prudente, DO1
de Souza, LB1
Chalfun-Júnior, A1
Paiva, R1
Marchiori, PER1
Lu, M2
An, Z1
Jiang, J2
Li, J7
Du, S1
Zhou, H1
Cui, J1
Wu, W1
Liu, Y7
Song, J1
Lian, Q1
Uddin Ahmad, Z1
Gang, DD1
Konggidinata, MI1
Gallo, AA1
Zappi, ME1
Yang, TWW1
Johari, Y1
Burton, PR1
Earnest, A1
Shaw, K1
Hare, JL1
Brown, WA1
Kim, GA1
Han, S1
Choi, GH1
Choi, J1
Lim, YS1
Gallo, A1
Cancelli, C1
Ceron, E1
Covino, M1
Capoluongo, E1
Pocino, K1
Ianiro, G1
Cammarota, G1
Gasbarrini, A1
Montalto, M1
Somasundar, Y1
Lu, IC1
Mills, MR1
Qian, LY1
Olivares, X1
Ryabov, AD1
Collins, TJ1
Zhao, L1
Doddipatla, S1
Thomas, AM1
Nikolayev, AA1
Galimova, GR1
Azyazov, VN1
Mebel, AM1
Kaiser, RI1
Guo, S1
Yang, P1
Yu, X2
Wu, Y2
Zhang, H1
Yu, B2
Han, B1
George, MW1
Moor, MB1
Bonny, O1
Langenberg, E1
Paik, H1
Smith, EH1
Nair, HP1
Hanke, I1
Ganschow, S1
Catalan, G1
Domingo, N1
Schlom, DG1
Assefa, MK1
Wu, G2
Hayton, TW1
Becker, B1
Enikeev, D1
Netsch, C1
Gross, AJ1
Laukhtina, E1
Glybochko, P1
Rapoport, L1
Herrmann, TRW1
Taratkin, M1
Dai, W1
Shi, J2
Carreno, J1
Kloner, RA1
Pickersgill, NA1
Vetter, JM1
Kim, EH1
Cope, SJ1
Du, K1
Venkatesh, R1
Giardina, JD1
Saad, NES1
Bhayani, SB1
Figenshau, RS1
Eriksson, J1
Landfeldt, E1
Ireland, S1
Jackson, C1
Wyatt, E1
Gaudig, M1
Stancill, JS1
Happ, JT1
Broniowska, KA1
Hogg, N1
Corbett, JA1
Tang, LF1
Bi, YL1
Fan, Y2
Sun, YB1
Wang, AL1
Xiao, BH1
Wang, LF1
Qiu, SW1
Guo, SW1
Wáng, YXJ1
Sun, J2
Chu, S1
Pan, Q1
Li, D2
Zheng, S2
Ma, L1
Wang, L3
Hu, T1
Wang, F1
Han, Z1
Yin, Z1
Ge, X1
Xie, K1
Lei, P1
Dias-Santagata, D1
Lennerz, JK1
Sadow, PM1
Frazier, RP1
Govinda Raju, S1
Henry, D1
Chung, T1
Kherani, J1
Rothenberg, SM1
Wirth, LJ1
Marti, CN1
Choi, NG1
Bae, SJ1
Ni, L1
Luo, X1
Dai, T1
Yang, Y3
Lee, R1
Fleischer, AS1
Wemhoff, AP1
Ford, CR1
Kleppinger, EL1
Helms, K1
Bush, AA1
Luna-Abanto, J1
García Ruiz, L1
Laura Martinez, J1
Álvarez Larraondo, M1
Villoslada Terrones, V1
Dukic, L1
Maric, N1
Simundic, AM1
Chogtu, B1
Ommurugan, B1
Thomson, SR1
Kalthur, SG1
Benidir, M1
El Massoudi, S1
El Ghadraoui, L1
Lazraq, A1
Benjelloun, M1
Errachidi, F1
Cassar, M1
Law, AD1
Chow, ES1
Giebultowicz, JM1
Kretzschmar, D1
Salonurmi, T1
Nabil, H1
Ronkainen, J1
Hyötyläinen, T1
Hautajärvi, H1
Savolainen, MJ1
Tolonen, A1
Orešič, M1
Känsäkoski, P1
Rysä, J1
Hakkola, J1
Hukkanen, J1
Zhu, N1
Li, Y4
Du, Q1
Hao, P1
Cao, X1
Li, CX1
Zhao, S1
Luo, XM1
Feng, JX1
Gonzalez-Cotto, M1
Guo, L2
Karwan, M1
Sen, SK1
Barb, J1
Collado, CJ1
Elloumi, F1
Palmieri, EM1
Boelte, K1
Kolodgie, FD1
Finn, AV1
Biesecker, LG1
McVicar, DW1
Qu, F1
Deng, Z1
Xie, Y2
Tang, J3
Chen, Z2
Luo, W1
Xiong, D1
Zhao, D1
Fang, J1
Zhou, Z1
Niu, PP1
Song, B1
Xu, YM1
Zhang, Z2
Qiu, N1
Yin, J1
Zhang, J3
Guo, W1
Liu, M2
Liu, T2
Chen, D5
Luo, K1
He, Z2
Zheng, G1
Xu, F1
Sun, W2
Yin, F1
van Hest, JCM1
Du, L2
Shi, X1
Kang, S1
Duan, W1
Zhang, S2
Feng, J2
Qi, N1
Shen, G1
Ren, H1
Shang, Q1
Zhao, W2
Yang, Z2
Jiang, X2
Alame, M1
Cornillot, E1
Cacheux, V1
Tosato, G1
Four, M1
De Oliveira, L1
Gofflot, S1
Delvenne, P1
Turtoi, E1
Cabello-Aguilar, S1
Nishiyama, M1
Turtoi, A1
Costes-Martineau, V1
Colinge, J1
Guo, Q1
Quan, M1
Dong, J1
Bai, J1
Han, R1
Cai, Y1
Lv, YQ1
Chen, Q1
Lyu, HD1
Deng, L1
Zhou, D1
Xiao, X1
De Langhe, S1
Billadeau, DD1
Lou, Z1
Zhang, JS1
Xue, Z1
Shen, XD1
Gao, F1
Busuttil, RW1
Kupiec-Weglinski, JW1
Ji, H1
Otano, I1
Alvarez, M1
Minute, L1
Ochoa, MC1
Migueliz, I1
Molina, C1
Azpilikueta, A1
de Andrea, CE1
Etxeberria, I1
Sanmamed, MF1
Teijeira, Á1
Berraondo, P1
Melero, I1
Zhong, Z1
Xie, X1
Yu, Q1
Zhou, C1
Liu, C2
Liu, W1
Chen, W1
Yin, Y1
Li, CW1
Hsu, JL1
Zhou, Q1
Hu, B1
Fu, P1
Atyah, M1
Ma, Q2
Xu, Y1
Dong, Q1
Hung, MC1
Ren, N1
Huang, P1
Liao, R1
Chen, X3
Cao, Q1
Yuan, X1
Nie, W1
Yang, J2
Shao, B1
Ma, X1
Bi, Z1
Liang, X1
Tie, Y1
Mo, F1
Xie, D1
Wei, Y1
Wei, X2
Dokla, EME1
Fang, CS1
Chu, PC1
Chang, CS1
Abouzid, KAM1
Chen, CS1
Blaszczyk, R1
Brzezinska, J1
Dymek, B1
Stanczak, PS1
Mazurkiewicz, M1
Olczak, J1
Nowicka, J1
Dzwonek, K1
Zagozdzon, A1
Golab, J1
Golebiowski, A1
Xin, Z1
Himmelbauer, MK1
Jones, JH1
Enyedy, I1
Gilfillan, R1
Hesson, T1
King, K1
Marcotte, DJ1
Murugan, P1
Santoro, JC1
Gonzalez-Lopez de Turiso, F1
Pedron, J1
Boudot, C1
Brossas, JY1
Pinault, E1
Bourgeade-Delmas, S1
Sournia-Saquet, A1
Boutet-Robinet, E1
Destere, A1
Tronnet, A1
Bergé, J1
Bonduelle, C1
Deraeve, C1
Pratviel, G1
Stigliani, JL1
Paris, L1
Mazier, D1
Corvaisier, S1
Since, M1
Malzert-Fréon, A1
Wyllie, S1
Milne, R1
Fairlamb, AH1
Valentin, A1
Courtioux, B1
Verhaeghe, P1
Fang, X1
Gao, M2
Gao, H1
Bi, W1
Tang, H1
Cui, Y1
Zhang, L3
Fan, H1
Yu, H1
Mathison, CJN1
Chianelli, D1
Rucker, PV1
Nelson, J1
Roland, J1
Huang, Z2
Xie, YF1
Epple, R1
Bursulaya, B1
Lee, C1
Gao, MY1
Shaffer, J1
Briones, S1
Sarkisova, Y1
Galkin, A1
Li, N1
Li, C2
Hua, S1
Kasibhatla, S1
Kinyamu-Akunda, J1
Kikkawa, R1
Molteni, V1
Tellew, JE1
Jin, X1
Pang, B1
Liu, Q2
Liu, X3
Huang, Y2
Josephine Fauci, A1
Ma, Y1
Soo Lee, M1
Yuan, W1
Gao, R1
Qi, H1
Zheng, W1
Yang, F2
Chua, H1
Wang, K1
Ou, Y1
Huang, M1
Zhu, Y1
Yu, J1
Tian, J1
Zhao, M1
Hu, J1
Yao, C1
Zhang, B1
Usawachintachit, M1
Tzou, DT1
Washington, SL1
Hu, W1
Chi, T1
Sorensen, MD1
Bailey, MR1
Hsi, RS1
Cunitz, BW1
Simon, J1
Wang, YN1
Dunmire, BL1
Paun, M1
Starr, F1
Lu, W1
Evan, AP1
Harper, JD1
Han, G1
Rodrigues, AE1
Fouladvand, F1
Falahi, E1
Asbaghi, O1
Abbasnezhad, A1
Anigboro, AA1
Avwioroko, OJ1
Cholu, CO1
Sonei, A1
Fazelipour, S1
Kanaani, L1
Jahromy, MH1
Jo, K1
Hong, KB1
Suh, HJ1
Park, JH1
Shin, E1
Park, E1
Kouakou-Kouamé, CA1
N'guessan, FK1
Montet, D1
Djè, MK1
Kim, GD1
González-Fernández, D1
Pons, EDC1
Rueda, D1
Sinisterra, OT1
Murillo, E1
Scott, ME1
Koski, KG1
Shete, PB1
Gonzales, R1
Ackerman, S1
Cattamanchi, A1
Handley, MA1
Li, XX1
Xiao, SZ1
Gu, FF1
He, WP1
Ni, YX1
Han, LZ1
Heffernan, JK1
Valgepea, K1
de Souza Pinto Lemgruber, R1
Casini, I1
Plan, M1
Tappel, R1
Simpson, SD1
Köpke, M1
Nielsen, LK1
Marcellin, E1
Cen, YK1
Lin, JG1
Wang, YL1
Wang, JY1
Liu, ZQ1
Zheng, YG1
Spirk, D1
Noll, S1
Burnier, M1
Rimoldi, S1
Noll, G1
Sudano, I1
Penzhorn, BL1
Oosthuizen, MC1
Kobos, LM1
Alqatani, S1
Ferreira, CR1
Aryal, UK1
Hedrick, V1
Sobreira, TJP1
Shannahan, JH1
Gale, P1
Singhroy, DN1
MacLean, E1
Kohli, M1
Lessem, E1
Branigan, D1
England, K1
Suleiman, K1
Drain, PK1
Ruhwald, M1
Schumacher, S1
Denkinger, CM1
Waning, B1
Van Gemert, W1
Pai, M1
Myers, RK1
Bonsu, JM1
Carey, ME1
Yerys, BE1
Mollen, CJ1
Curry, AE1
Douglas, TA1
Alinezhadbalalami, N1
Balani, N1
Schmelz, EM1
Davalos, RV1
Kamaldinov, T1
Erndt-Marino, J1
Levin, M1
Kaplan, DL1
Hahn, MS1
Heidarimoghadam, R1
Farmany, A1
Lee, JJ1
Kang, J1
Park, S1
Cho, JH1
Oh, S1
Park, DJ1
Perez-Maldonado, R1
Cho, JY1
Park, IH1
Kim, HB1
Song, M1
Mfarrej, B1
Jofra, T1
Morsiani, C1
Gagliani, N1
Fousteri, G1
Battaglia, M1
Giuliano, C1
Levinger, I1
Vogrin, S1
Neil, CJ1
Allen, JD1
Lv, Y1
Yuan, R1
Cai, B1
Bahrami, B1
Chowdhury, AH1
Yang, C2
Qiao, Q1
Liu, SF1
Zhang, WH1
Kolano, L1
Knappe, D1
Volke, D1
Sträter, N1
Hoffmann, R1
Coussens, M1
Calders, P1
Lapauw, B1
Celie, B1
Banica, T1
De Wandele, I1
Pacey, V1
Malfait, F1
Rombaut, L1
Vieira, D1
Angel, S1
Honjol, Y1
Gruenheid, S1
Gbureck, U1
Harvey, E1
Merle, G1
Seo, G1
Lee, G1
Kim, MJ1
Baek, SH1
Choi, M1
Ku, KB1
Lee, CS1
Jun, S1
Park, D1
Kim, HG1
Kim, SJ1
Lee, JO1
Kim, BT1
Park, EC1
Kim, SI1
Ende, M1
Kirkkala, T1
Loitzenbauer, M1
Talla, D1
Wildner, M1
Miletich, R1
Criado, A1
Lavela, P1
Tirado, JL1
Pérez-Vicente, C1
Kang, D1
Feng, D2
Fang, Z1
Wei, F1
De Clercq, E1
Pannecouque, C1
Zhan, P1
Guo, Y2
Shen, Y1
Wang, Q2
Kawazoe, Y1
Jena, P1
Sun, Z1
Li, Z2
Liang, H1
Xu, X1
Ma, G1
Huo, X1
Church, JS1
Chace-Donahue, F1
Blum, JL1
Ratner, JR1
Zelikoff, JT1
Schwartzer, JJ1
Fiseha, T1
Tamir, Z1
Yao, W1
Wang, P1
Mi, K1
Cheng, J1
Gu, C1
Huang, J2
Sun, HB1
Xing, WQ1
Liu, XB1
Zheng, Y1
Yang, SJ1
Wang, ZF1
Liu, SL1
Ba, YF1
Zhang, RX1
Liu, BX1
Fan, CC1
Chen, PN1
Liang, GH1
Yu, YK1
Wang, HR1
Li, HM1
Li, ZX1
Lalani, SS1
Anasir, MI1
Poh, CL1
Khan, IT1
Nadeem, M1
Imran, M1
Khalique, A1
Raspini, B1
Porri, D1
De Giuseppe, R1
Chieppa, M1
Liso, M1
Cerbo, RM1
Civardi, E1
Garofoli, F1
Monti, MC1
Vacca, M1
De Angelis, M1
Cena, H1
Kong, D1
Han, X1
Zhou, Y3
Xue, H1
Ruan, Z1
Li, S2
Noer, PR1
Kjaer-Sorensen, K1
Juhl, AK1
Goldstein, A1
Ke, C1
Oxvig, C1
Duan, C1
Kong, F1
Lin, S1
Wang, Z2
Bhattacharya, R1
Mazumder, D1
Yan, X1
Ma, C1
Tang, Y1
Kong, X1
Lu, J1
Zhang, M1
Vital-Jacome, M1
Cazares-Granillo, M1
Carrillo-Reyes, J1
Buitron, G1
Jacob, SI1
Douair, I1
Maron, L1
Ménard, G1
Rusjan, P1
Sabioni, P1
Di Ciano, P1
Mansouri, E1
Boileau, I1
Laveillé, A1
Capet, M1
Duvauchelle, T1
Schwartz, JC1
Robert, P1
Le Foll, B1
Xia, Y1
Chen, S1
Luo, M1
Wu, J1
Cai, S1
He, Y2
Garbacz, P1
Misiak, M1
Jackowski, K1
Yuan, Q1
Sherrell, PC1
Chen, J2
Bi, X1
Nutho, B1
Mahalapbutr, P1
Hengphasatporn, K1
Pattaranggoon, NC1
Simanon, N1
Shigeta, Y1
Hannongbua, S1
Rungrotmongkol, T1
Caffrey, PJ1
Kher, R1
Bian, K1
Delaney, S1
Xue, J1
Wu, P1
Xu, L1
Yuan, Y1
Luo, J1
Ye, S1
Ustriyana, P1
Wei, B1
Raee, E1
Hu, Y1
Wesdemiotis, C1
Sahai, N1
Kaur, A1
Nigam, K1
Srivastava, S1
Tyagi, A1
Dang, S1
Millar, JE1
Bartnikowski, N1
Passmore, MR1
Obonyo, NG1
Malfertheiner, MV1
von Bahr, V1
Redd, MA1
See Hoe, L1
Ki, KK1
Pedersen, S1
Boyle, AJ1
Baillie, JK1
Shekar, K1
Palpant, N1
Suen, JY1
Matthay, MA1
McAuley, DF1
Fraser, JF1
Settles, JA1
Gerety, GF1
Spaepen, E1
Suico, JG1
Child, CJ1
Oh, BL1
Lee, JS1
Lee, EY1
Lee, HY1
Yu, HG1
Leslie, I1
Boos, LA1
Larkin, J1
Pickering, L1
Lima, HK1
Vogel, K1
Hampel, D1
Wagner-Gillespie, M1
Fogleman, AD1
Ferraz, SL1
O'Connor, M1
Mazzucchelli, TG1
Kajiyama, H1
Suzuki, S1
Shimbo, A1
Utsumi, F1
Yoshikawa, N1
Kikkawa, F1
Javvaji, PK1
Dhali, A1
Francis, JR1
Kolte, AP1
Roy, SC1
Selvaraju, S1
Mech, A1
Sejian, V1
DeSilva, S1
Vaidya, SS1
Mao, C1
Akhatayeva, Z1
Cheng, H1
Zhang, G1
Jiang, F1
Meng, X1
Elnour, IE1
Lan, X1
Song, E1
Rohde, S1
Antonides, CFJ1
Muslem, R1
de Woestijne, PCV1
der Meulen, MHV1
Kraemer, US1
Dalinghaus, M1
Bogers, AJJC1
Pourmand, A1
Ghassemi, M1
Sumon, K1
Amini, SB1
Hood, C1
Sikka, N1
Duan, H1
Chen, WP1
Fan, M1
Wang, WP1
Yu, L1
Tan, SJ1
Xin, S1
Wan, LJ1
Guo, YG1
Tanda, S1
Gingl, K1
Ličbinský, R1
Hegrová, J1
Goessler, W1
Li, ZL1
Zhou, YL1
Yan, W1
Luo, L1
Su, ZZ1
Fan, MZ1
Wang, SR1
Zhao, WG1
Xu, D1
Hassan, HM1
Jiang, Z1
Bachmann, KF1
Haenggi, M1
Jakob, SM1
Takala, J1
Gattinoni, L1
Berger, D1
Bentley, RF1
Vecchiarelli, E1
Banks, L1
Gonçalves, PEO1
Thomas, SG1
Goodman, JM1
Mather, K1
Boachie, R1
Anini, Y1
Panahi, S1
Anderson, GH1
Luhovyy, BL1
Nafie, MS1
Arafa, K1
Sedky, NK1
Alakhdar, AA1
Arafa, RK1
Fan, S1
Hu, H1
Liang, J1
Hu, BC1
Wen, Z1
Hu, D1
Liu, YY1
Chu, Q1
Wu, MC1
Lu, X1
Hu, M1
Shen, H1
Yao, M1
Dahlgren, RA1
Vysloužil, J1
Kulich, P1
Zeman, T1
Vaculovič, T1
Tvrdoňová, M1
Mikuška, P1
Večeřa, Z1
Stráská, J1
Moravec, P1
Balcar, VJ1
Šerý, O1
Qiao, L1
Xiong, X1
Peng, X1
Zheng, J1
Duan, J1
Xiao, W1
Zhou, HY1
Sui, ZY1
Zhao, FL1
Sun, YN1
Wang, HY1
Han, BH1
Jintao, X1
Shasha, Y1
Jincai, W1
Chunyan, L1
Mengya, Y1
Yongli, S1
Rasoanirina, BNV1
Lassoued, MA1
Miladi, K1
Razafindrakoto, Z1
Chaâbane-Banaoues, R1
Ramanitrahasimbola, D1
Cornet, M1
Sfar, S1
Liang, C1
Xing, Q1
Yi, JL1
Zhang, YQ1
Li, CY1
Tang, SJ1
Gao, C1
Sun, X1
Peng, M1
Sun, XF1
Zhang, T1
Shi, JH1
Liao, CX1
Gao, WJ1
Sun, LL1
Gao, Y1
Cao, WH1
Lyu, J1
Yu, CQ1
Wang, SF1
Pang, ZC1
Cong, LM1
Dong, Z1
Wu, F1
Wu, XP1
Jiang, GH1
Wang, XJ1
Wang, BY1
Li, LM1
Pan, L1
Wan, SP1
Yi, HWL1
He, HJ1
Yong, ZP1
Shan, GL1
Weng, TT1
Yan, SQ1
Gao, GP1
Wei, C1
Tao, FB1
Shao, ZH1
Yao, T1
Dong, S1
Shi, S1
Feng, YL1
Zhang, YW1
Wang, SP1
Shi, AX1
Operario, D1
Zhang, ZH1
Zhu, XF1
Zaller, N1
Gao, P1
Sun, YH1
Zhang, HB1
Yi, D1
Hsu, YC1
Wei, MT1
Nguyen, MH1
Shinohara, M1
Chang, BY1
Buggy, JJ1
Nagai, Y1
Kodama, T1
Asahara, H1
Takayanagi, H1
Shimomura, A1
Matsui, I1
Hamano, T1
Ishimoto, T1
Katou, Y1
Takehana, K1
Inoue, K1
Kusunoki, Y1
Mori, D1
Nakano, C1
Obi, Y1
Fujii, N1
Takabatake, Y1
Nakano, T1
Tsubakihara, Y1
Isaka, Y1
Rakugi, H1
Saeedi, R1
Jiang, SY1
Holmes, DT1
Kendler, DL1
Negredo, E2
Domingo, P1
Pérez-Álvarez, N2
Gutiérrez, M1
Mateo, G1
Puig, J2
Escrig, R1
Echeverría, P1
Bonjoch, A2
Clotet, B2
Tien, C1
Xu, JJ1
Chan, LS1
Chang, M1
Lim, C1
Lee, S1
Huh, B1
Shinada, S1
Bae, HS1
Fong, TL1
Liu, L1
Lin, W1
Yin, S1
Duan, A1
Cao, W1
Lavae-Mokhtari, M1
Mohammad-Khani, S1
Schmidt, RE1
Stoll, M1
Grigsby, IF1
Pham, L1
Gopalakrishnan, R1
Mansky, LM1
Mansky, KC1
Figueras, M1
Estany, C1
Rosales, J1
del Rio, L1
di Gregorio, S1
Gómez, G1
McComsey, GA1
Kitch, D1
Daar, ES1
Tierney, C1
Jahed, NC1
Tebas, P1
Myers, L1
Melbourne, K1
Ha, B1
Sax, PE1
Fessel, WJ1
Chau, Q1
Leong, D1
De Schutter, TM1
Neven, E1
Persy, VP1
Behets, GJ1
Postnov, AA1
De Clerck, NM1
D'Haese, PC1
Powderly, WG1
Ogirima, T1
Tano, K1
Kanehara, M1
Ishida, T1
Shakespeare, WC1
Bohacek, R1
Keenan, T1
Sundaramoorthi, R1
Metcalf, C1
Dilauro, A1
Roeloffzen, S1
Saltmarsh, J1
Paramanathan, G1
Dalgarno, D1
Narula, S1
Pradeepan, S1
van Schravendijk, MR1
Keats, J1
Ram, M1
Liou, S1
Adams, S1
Wardwell, S1
Bogus, J1
Iuliucci, J1
Weigele, M1
Xing, L1
Boyce, B1
Sawyer, TK1

Clinical Trials (2)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
MULTICENTRE STUDY TO ASSESS CHANGES IN BONE MINERAL DENSITY OF THE SWITCH FROM TENOFOVIR TO ABACAVIR IN HIV-1-INFECTED SUBJECTS WITH LOSS OF BONE MINERAL DENSITY[NCT01153217]Phase 354 participants (Actual)Interventional2010-07-31Completed
A Phase IIIB, Randomized Trial of Open-Label Efavirenz or Atazanavir With Ritonavir in Combination With Double-Blind Comparison of Emtricitabine/Tenofovir or Abacavir/Lamivudine in Antiretroviral-Naive Subjects[NCT00118898]Phase 31,864 participants (Actual)Interventional2005-09-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

Amount of Study Follow-up

Participants were to be followed for 96 weeks after the last enrollment. Accrual was expected to take 96 weeks, thus the planned follow-up time was 96 to 192 weeks, dependent on when in the study the participant enrolled. This outcome summarizes that total amount of actual follow-up in weeks from randomization to last contact. (NCT00118898)
Timeframe: Follow-up time was variable, median follow-up was 138 weeks

InterventionWeeks (Median)
EFV, FTC/TDF, and Placebo ABC/3TC141.4
EFV, Placebo FTC/TDF, and ABC/3TC133.3
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC141.6
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC137.3

Number of Participants With a Grade 3/4 Safety Event

Grade 3/4 safety event is defined as a grade 3 or 4 sign, symptom, or laboratory abnormality that is at least one grade higher than at baseline, total bilirubin and creatine kinase (CPK) were excluded. Grading used the Division of AIDS (DAIDS) 2004 Severity of Adverse Events Tables. As-treated analysis censored at 1st modification of initially assigned regimen, participants who never started treatment were excluded. (NCT00118898)
Timeframe: Over all study follow-up while on initially assigned treatment, median follow-up was 120 weeks

Interventionparticipants (Number)
EFV, FTC/TDF, and Placebo ABC/3TC145
EFV, Placebo FTC/TDF, and ABC/3TC182
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC137
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC156

Number of Participants With Regimen Failure

Blood samples for determining virologic failure were obtained at 16 and 24 weeks, and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks and before 24 weeks or >=200 copies/mL at or after 24 weeks. Treatment modification was defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: Follow-up time was variable, median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

Interventionparticipants (Number)
EFV, FTC/TDF, and Placebo ABC/3TC162
EFV, Placebo FTC/TDF, and ABC/3TC246
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC157
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC233

Number of Participants With Treatment Modification

Treatment modification is defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: Follow-up time was variable, median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

Interventionparticipants (Number)
EFV, FTC/TDF, and Placebo ABC/3TC152
EFV, Placebo FTC/TDF, and ABC/3TC239
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC138
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC216

Number of Participants With Virologic Failure

Blood samples for determining virologic failure were obtained at 16 and 24 weeks, and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks and before 24 weeks or >=200 copies/mL at or after 24 weeks. (NCT00118898)
Timeframe: Follow-up time was variable, median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

Interventionparticipants (Number)
EFV, FTC/TDF, and Placebo ABC/3TC57
EFV, Placebo FTC/TDF, and ABC/3TC72
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC57
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC83

Number of Participants With Virologic Failure and Emergence of Major Resistance

Emergence of resistant virus was assessed by genotypic testing performed at Stanford University for all participants who met criteria for virologic failure and retrospectively on baseline samples from these participants. Major mutations were defined by International AIDS Society-United States of America (2008), as well as T69D, L74I, G190C/E/Q/T/V for reverse transcriptase and L24I, F53L, I54V/A/T/S, G73C/S/T/A, N88D for protease. (NCT00118898)
Timeframe: Follow-up time was variable,median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

Interventionparticipants (Number)
EFV, FTC/TDF, and Placebo ABC/3TC27
EFV, Placebo FTC/TDF, and ABC/3TC41
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC5
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC12

Change in CD4 Count (Cells/mm3) From Baseline

Change was calculated as the CD4 count at Week 48 (or at Week 96) minus the baseline CD4 count (mean of pre-entry and entry values). (NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
InterventionCells/mm3 (Median)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC163220.5
EFV, Placebo FTC/TDF, and ABC/3TC188250.5
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC175251.5
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC177.5250.3

Change in Fasting High-density Lipoprotein (HDL) Cholesterol Level From Baseline

Only fasting results are included. The protocol did not require that samples be collected fasting. (NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
Interventionmg/dL (Median)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC89
EFV, Placebo FTC/TDF, and ABC/3TC1011
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC54
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC87

Change in Fasting Non-high Density Lipoprotein (Non-HDL) Cholesterol Level From Baseline

Only fasting results are included. The protocol did not require that samples be collected fasting. (NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
Interventionmg/dL (Median)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC1413.5
EFV, Placebo FTC/TDF, and ABC/3TC2318
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC810
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC2018

Change in Fasting Total Cholesterol Level From Baseline

Only fasting results are included. The protocol did not require that samples be collected fasting. (NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
Interventionmg/dL (Median)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC2223
EFV, Placebo FTC/TDF, and ABC/3TC3533
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC1114
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC3025

Change in Fasting Triglyceride Level From Baseline

Only fasting results are included. The protocol did not require that samples be collected fasting. (NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
Interventionmg/dL (Median)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC109
EFV, Placebo FTC/TDF, and ABC/3TC1514
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC1411
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC2433

Cumulative Probability of Not Experiencing a Grade 3/4 Safety Event

Kaplan-Meier estimate of the cumulative survival probability at week 48 and 96. Grade 3/4 safety event is defined as a grade 3 or 4 sign, symptom, or laboratory abnormality that is at least one grade higher than at baseline, total bilirubin and creatine kinase (CPK) were excluded. Grading used the Division of AIDS (DAIDS) 2004 Severity of Adverse Events Tables. As-treated analysis censored at 1st modification of initially assigned regimen, participants who never started treatment were excluded. (NCT00118898)
Timeframe: At week 48 and 96

,,,
Interventionpercentage of participants (Number)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC7870
EFV, Placebo FTC/TDF, and ABC/3TC6458
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC7973
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC7366

Cumulative Probability of Not Experiencing Regimen Failure

Kaplan-Meier estimate of the cumulative survival probability at week 48 and 96. Blood samples for determining virologic failure were obtained at 16 and 24 weeks, and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks and before 24 weeks or >=200 copies/mL at or after 24 weeks. Treatment modification was defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: At week 48 and 96

,,,
Interventionpercentage of participants (Number)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC7970
EFV, Placebo FTC/TDF, and ABC/3TC6454
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC8073
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC6657

Cumulative Probability of Not Experiencing Treatment Modification

Kaplan-Meier estimate of the cumulative survival probability at week 48 and 96. Treatment modification is defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: At week 48 and 96

,,,
Interventionpercentage of participants (Number)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC8073
EFV, Placebo FTC/TDF, and ABC/3TC6756
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC8677
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC7362

Cumulative Probability of Not Experiencing Virologic Failure

Kaplan-Meier estimate of the cumulative survival probability at week 48 and 96. Blood samples for determining virologic failure were obtained at 16 and 24 weeks, and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks and before 24 weeks or >=200 copies/mL at or after 24 weeks. (NCT00118898)
Timeframe: At week 48 and 96

,,,
Interventionpercentage of participants (Number)
Week 48Week 96
EFV, FTC/TDF, and Placebo ABC/3TC9490
EFV, Placebo FTC/TDF, and ABC/3TC8885
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC9289
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC8883

Number of Participants Experiencing Certain Targeted Clinical Events, Including Death, AIDS-defining Illness, and HIV-1 Related Events.

"AIDS-defining illnesses were defined per CDC category C definition. HIV-1 related events were defined per CDC category B definition. Events underwent study chair review for classification. See link below for more details.~http://www.cdc.gov/mmwr/preview/mmwrhtml/00018871.htm" (NCT00118898)
Timeframe: Follow-up time was variable, median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

,,,
InterventionParticipants (Number)
DeathAIDS-defining illnessHIV-1 relatated event
EFV, FTC/TDF, and Placebo ABC/3TC61456
EFV, Placebo FTC/TDF, and ABC/3TC112561
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC62057
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC82363

Number of Participants With HIV-1 RNA Levels Less Than 200 Copies/mL

(NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
InterventionParticipants (Number)
Number of Participants with RNA data at Week 48Number with HIV-1 RNA <200 copies/ml at Week 48Number of Participants with RNA data at Week 96Number with HIV-1 RNA <200 copies/ml at Week 96
EFV, FTC/TDF, and Placebo ABC/3TC415398379362
EFV, Placebo FTC/TDF, and ABC/3TC400377361342
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC416391384368
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC411372374346

The Number of Participants With HIV-1 RNA Levels Less Than 50 Copies/mL

(NCT00118898)
Timeframe: At Weeks 48 and 96

,,,
InterventionParticipants (Number)
Number of Participants with RNA data at Week 48Number with HIV-1 RNA <50 copies/ml at Week 48Number of Participants with RNA data at Week 96Number with HIV-1 RNA <50 copies/ml at Week 96
EFV, FTC/TDF, and Placebo ABC/3TC415372379345
EFV, Placebo FTC/TDF, and ABC/3TC400346361328
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC416348384345
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC411322374317

Time From Randomization to Virologic Failure

Blood samples for determining virologic failure were obtained at visit weeks 16 and 24 , and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks after randomization and before 24 weeks, or >=200 copies/mL at or after 24 weeks. The 5th percentile for time to virologic failure is the time (in weeks) at which 5% of the participants have experienced virologic failure. (NCT00118898)
Timeframe: Follow-up time was variable,median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

,,,
InterventionWeeks (Number)
5th percentile time to virologic failure10th percentile time to virologic failure
EFV, FTC/TDF, and Placebo ABC/3TC3696
EFV, Placebo FTC/TDF, and ABC/3TC2436
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC2484
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC2436

Time From Treatment Dispensation to a Grade 3/4 Safety Event

Grade 3/4 safety event is defined as a grade 3 or 4 sign, symptom, or laboratory abnormality that is at least one grade higher than at baseline, total bilirubin and creatine kinase (CPK) were excluded. Grading used the Division of AIDS (DAIDS) 2004 Severity of Adverse Events Tables. (NCT00118898)
Timeframe: All follow-up while on initially assigned regimen; the median (25th, 75th percentile) follow-up while on initial regimen was 120 (54, 156) weeks and the range was 0 to 205 weeks.

,,,
InterventionWeeks (Number)
5th percentile time to a grade 3/4 safety event10th percentile time to a grade 3/4 safety event25th percentile time to a grade 3/4 safety event
EFV, FTC/TDF, and Placebo ABC/3TC2.67.959.3
EFV, Placebo FTC/TDF, and ABC/3TC1.32.016.0
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC3.08.181.4
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC1.33.944.4

Time From Treatment Dispensation to Regimen Failure (First Occurrence of Virologic Failure or Treatment Modification)

Blood samples for determining virologic failure were obtained at 16 and 24 weeks, and every 12 weeks thereafter. Virologic failure was defined as a confirmed plasma HIV-1 RNA level >= 1000 copies/mL at or after 16 weeks and before 24 weeks or >=200 copies/mL at or after 24 weeks. Treatment modification was defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: Follow-up time was variable,median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

,,,
InterventionWeeks (Number)
5th percentile time to regimen failure10th percentile time to regimen failure25th percentile time to regimen failure
EFV, FTC/TDF, and Placebo ABC/3TC41672
EFV, Placebo FTC/TDF, and ABC/3TC4424
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC41684
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC4436

Time From Treatment Dispensation to Treatment Modification

Treatment modification is defined as the 1st modification of the regimen, including a permanent discontinuation, switch, or substitution. (NCT00118898)
Timeframe: Follow-up time was variable,median follow-up was 138 weeks; see 'Amount of study follow-up' outcome for details

,,,
InterventionWeeks (Number)
5th percentile time to treatment modification10th percentile time to treatment modification25th percentile time to treatment modification
EFV, FTC/TDF, and Placebo ABC/3TC3.415.083.7
EFV, Placebo FTC/TDF, and ABC/3TC1.42.127.4
RTV-boosted ATV, FTC/TDF, and Placebo ABC/3TC7.924.9108.9
RTV-boosted ATV, Placebo FTC/TDF, and ABC/3TC1.65.043.6

Reviews

5 reviews available for adenine and Osteoporosis

ArticleYear
The Role of m6A in Osteoporosis and the Differentiation of Mesenchymal Stem Cells into Osteoblasts and Adipocytes.
    Current stem cell research & therapy, 2023, Volume: 18, Issue:3

    Topics: Adenine; Adipocytes; Cell Differentiation; Humans; Mesenchymal Stem Cells; Osteoblasts; Osteoporosis

2023
Tenofovir-induced osteopenia and hyperparathyroidism: A case report and literature review.
    Frontiers in endocrinology, 2022, Volume: 13

    Topics: Adenine; Bone Diseases, Metabolic; Calcium; Humans; Hyperparathyroidism, Primary; Hyperparathyroidis

2022
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
Tenofovir alafenamide as compared to tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics.
    Expert review of gastroenterology & hepatology, 2017, Volume: 11, Issue:11

    Topics: Adenine; Age Factors; Alanine; Antiviral Agents; Bone Density; Clinical Decision-Making; Female; Glo

2017
Osteoporosis and bone health in HIV.
    Current HIV/AIDS reports, 2012, Volume: 9, Issue:3

    Topics: Absorptiometry, Photon; Acquired Immunodeficiency Syndrome; Adenine; Alcohol Drinking; Anti-HIV Agen

2012

Trials

3 trials available for adenine and Osteoporosis

ArticleYear
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor P

2016
Improvement in bone mineral density after switching from tenofovir to abacavir in HIV-1-infected patients with low bone mineral density: two-centre randomized pilot study (OsteoTDF study).
    The Journal of antimicrobial chemotherapy, 2014, Volume: 69, Issue:12

    Topics: Adenine; Adult; Anti-HIV Agents; Bone Density; Dideoxynucleosides; Female; HIV Infections; Humans; M

2014
Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG
    The Journal of infectious diseases, 2011, Jun-15, Volume: 203, Issue:12

    Topics: Absorptiometry, Photon; Adenine; Adult; Alkynes; Anti-HIV Agents; Antiretroviral Therapy, Highly Act

2011

Other Studies

13 other studies available for adenine and Osteoporosis

ArticleYear
Retrospective analysis of the clinical characteristics of adefovir dipivoxil-induced Fanconi's syndrome in the Chinese population.
    Journal of clinical pharmacy and therapeutics, 2020, Volume: 45, Issue:4

    Topics: Adenine; Adult; Aged; Alkaline Phosphatase; Asian People; Bone Density; Fanconi Syndrome; Female; Gl

2020
The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss.
    Bone, 2014, Volume: 60

    Topics: Adenine; Administration, Oral; Agammaglobulinaemia Tyrosine Kinase; Animals; Bone Resorption; Cell D

2014
Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.
    Journal of the American Society of Nephrology : JASN, 2014, Volume: 25, Issue:9

    Topics: Adenine; Alanine; Animals; Apoptosis; Arginine; Calcium; Calcium Phosphates; Cells, Cultured; Chemic

2014
Fibroblast growth factor 23 is elevated in tenofovir-related hypophosphatemia.
    Calcified tissue international, 2014, Volume: 94, Issue:6

    Topics: Adenine; Adult; Anti-HIV Agents; Bone Density; Fanconi Syndrome; Fibroblast Growth Factor-23; Fibrob

2014
Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling.
    Digestive diseases and sciences, 2015, Volume: 60, Issue:2

    Topics: Absorptiometry, Photon; Adenine; Adult; Aged; Antiviral Agents; Asian People; Bone Density; Cross-Se

2015
Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease.
    Kidney international, 2017, Volume: 91, Issue:1

    Topics: Adenine; Animals; Anthraquinones; Disease Models, Animal; DNA (Cytosine-5-)-Methyltransferase 1; DNA

2017
[Acute renal failure and hypercalcemia in an AIDS patient on tenofovir and low-dose vitamin D therapy with immune reconstitution inflammatory syndrome].
    Medizinische Klinik (Munich, Germany : 1983), 2009, Oct-15, Volume: 104, Issue:10

    Topics: Acquired Immunodeficiency Syndrome; Acute Kidney Injury; Adenine; Adrenal Cortex Hormones; Adult; AI

2009
Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts.
    Biochemical and biophysical research communications, 2010, Jan-15, Volume: 391, Issue:3

    Topics: Adenine; Animals; Anti-HIV Agents; Aspartate Aminotransferase, Mitochondrial; Bone Density; Cell Sur

2010
High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study.
    AIDS (London, England), 2010, Nov-27, Volume: 24, Issue:18

    Topics: Absorptiometry, Photon; Adenine; Aged; Antiretroviral Therapy, Highly Active; Bone Density; Cohort S

2010
Association of osteonecrosis and osteoporosis in HIV-1-infected patients.
    AIDS (London, England), 2011, Sep-24, Volume: 25, Issue:15

    Topics: Absorptiometry, Photon; Adenine; Alcohol Drinking; Anti-HIV Agents; California; Female; HIV Infectio

2011
Vascular calcification is associated with cortical bone loss in chronic renal failure rats with and without ovariectomy: the calcification paradox.
    American journal of nephrology, 2011, Volume: 34, Issue:4

    Topics: Adenine; Animals; Aorta; Body Weight; Bone and Bones; Calcinosis; Disease Progression; Female; Kidne

2011
Effects of the Chinese herbal medicine based on Hachimi-jio-gan in male rats with the adenine-induced osteopenia.
    Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan, 2005, Volume: 25, Issue:3

    Topics: Adenine; Animals; Bone Density; Drugs, Chinese Herbal; Kidney Failure, Chronic; Male; Osteoporosis;

2005
SAR of carbon-linked, 2-substituted purines: synthesis and characterization of AP23451 as a novel bone-targeted inhibitor of Src tyrosine kinase with in vivo anti-resorptive activity.
    Chemical biology & drug design, 2008, Volume: 71, Issue:2

    Topics: Adenine; Bone Resorption; Crystallography, X-Ray; Drug Delivery Systems; Enzyme Inhibitors; Humans;

2008