acylfulvene and Neoplasms

acylfulvene has been researched along with Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for acylfulvene and Neoplasms

ArticleYear
Susceptibility of the antioxidant selenoenyzmes thioredoxin reductase and glutathione peroxidase to alkylation-mediated inhibition by anticancer acylfulvenes.
    Chemical research in toxicology, 2011, May-16, Volume: 24, Issue:5

    Selenium, in the form of selenocysteine, is a critical component of some major redox-regulating enzymes, including thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). TrxR has emerged as an anticancer target for drug development due to its elevated expression level in many aggressive human tumors. Acylfulvenes (AFs) are semisynthetic derivatives of the natural product illudin S and display improved cytotoxic selectivity profiles. AF and illudin S alkylate cellular macromolecules. Compared to AFs, illudin S more readily reacts with thiol-containing small molecules such as cysteine, glutathione, and cysteine-containing peptides. However, a previous study indicates that the reactivity of AFs and illudin S with glutathione reductase, a thiol-containing enzyme, is inversely correlated with the reactivity toward small molecule thiols. In this study, we investigate mechanistic aspects underlying the enzymatic and cellular effects of the AFs and illudin S on thioredoxin reductase. Both AF and HMAF were found to inhibit mammalian TrxR in the low- to submicromolar range, but illudin S was significantly less potent. TrxR inhibition by AFs was shown to be irreversible, concentration- and time-dependent, and mediated by alkylation of C-terminus active site Sec/Cys residues. In contrast, neither AFs nor illudin S inhibits Gpx, demonstrating that enzyme structure-specific small molecule interactions have a significant influence over the inherent reactivity of the Sec residue. In human cancer cells, TrxR activity can be inhibited by low micromolar concentrations of all three drugs. Finally, it was demonstrated that preconditioning cells by the addition of selenite to the cell culture media results in an enhancement in cell sensitivity toward AFs. These data suggest potential strategies for increasing drug activity by combination treatments that promote selenium enzyme activity.

    Topics: Agaricales; Alkylation; Antineoplastic Agents; Antioxidants; Cell Survival; Cysteine; Enzyme Inhibitors; Glutathione Peroxidase; HeLa Cells; Humans; Neoplasms; Polycyclic Sesquiterpenes; Selenocysteine; Sesquiterpenes; Spiro Compounds; Thioredoxin-Disulfide Reductase

2011
Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates.
    Chemical research in toxicology, 2011, Nov-21, Volume: 24, Issue:11

    Acylfulvenes (AFs), a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic toward cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrate chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analogue was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation.

    Topics: Alcohol Dehydrogenase; Alkylation; Animals; Antibiotics, Antineoplastic; Biotransformation; Borohydrides; Cell Line, Tumor; Cell Survival; DNA; Enzyme Activation; Humans; NADP; Neoplasms; Polycyclic Sesquiterpenes; Rats; Sesquiterpenes; Spiro Compounds; Stereoisomerism; Structure-Activity Relationship

2011
Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene.
    Bioconjugate chemistry, 2010, Volume: 21, Issue:1

    Targeted delivery of therapeutic drugs promises to become the norm to treat cancer. Here, we conjugated the cytotoxic agent 6-hydroxypropylacylfulvene (HPAF) to anginex, a peptide that targets galectin-1, which is highly expressed in endothelial cells of tumor vessels. In a human ovarian cancer model in mice, the conjugate inhibited tumor growth better than equivalent doses of either compound alone. Immunofluorescence on tumor tissue demonstrated that the conjugate, like parent anginex, selectively targeted tumor vasculature and inhibited tumor angiogenesis. Increased activity from the conjugate further suggests that HPAF retains at least some of its normal cytotoxic activity when linked to anginex. More importantly perhaps is the observation that the conjugate abrogates apparent systemic toxicity from treatment with HPAF. This work contributes to the development of tumor vascular targeting agents against cancer in the clinic.

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents; Cell Division; Endothelium, Vascular; Galectin 1; Humans; Neoplasms; Neovascularization, Pathologic; Peptides; Proteins; Sesquiterpenes; Spiro Compounds; Tumor Cells, Cultured; Umbilical Veins

2010