acyclovir has been researched along with Zika-Virus-Infection* in 4 studies
2 review(s) available for acyclovir and Zika-Virus-Infection
Article | Year |
---|---|
Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids.
Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and semisynthetic abietane-type diterpenoids have shown important antiviral activities. In this study, a biological evaluation of a number of either C-18- or C-19-functionalized known semisynthetic abietanes against Topics: Abietanes; Antiviral Agents; Chikungunya virus; Humans; Virus Replication; Viruses; Zika Virus; Zika Virus Infection | 2022 |
Review for Disease of the Year: Treatment of Viral Anterior Uveitis: A Perspective.
To define a clinically tailored therapeutic strategy for the treatment of viral anterior uveitis (VAU).. A PubMed search spanning the past 5 years was conducted using the MesH-terms "viral anterior uveitis" and "therapy.". The herpes simplex virus (HSV), the varicella zoster virus (VZV), and the cytomegalovirus (CMV) are the predominant pathogens in VAU. Other viruses, including rubella, chikungunya, and zika, have been linked with distinct forms of the disease. Depending on the causative agent and the host immunocompetence, the mainstay treatment for suspected VAU is a combination of topical or systemic antivirals and topical corticosteroids, supplemented with cycloplegics and intraocular-pressure-lowering medication.. Oral acyclovir, valacyclovir, and famciclovir are the mainstay of treatment for HSV- and VZV-induced infections. Brivudin serves as an alternative in insufficiently responsive cases. CMV-induced infections respond well to valganciclovir. A 3- to 12-month course of prophylactic treatment against recurrences is worth considering. Topics: Acyclovir; Antiviral Agents; Bromodeoxyuridine; Chikungunya Fever; Cytomegalovirus Infections; Eye Infections, Viral; Famciclovir; Herpes Simplex; Herpes Zoster Ophthalmicus; Humans; Rubella; Uveitis, Anterior; Valacyclovir; Zika Virus Infection | 2018 |
2 other study(ies) available for acyclovir and Zika-Virus-Infection
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Ocular flutter following Zika virus infection.
Zika virus (ZIKV) is an emerging flavivirus which has been linked to a number of neurologic manifestations such as Guillain-Barré syndrome (GBS), transverse myelitis, and meningo-encephalitis. Ophthalmologic manifestations are increasingly being reported; however, ocular dyskinesias have not been described in this context to date. Herein, we report a case of a 22-year-old female who presented with ocular flutter and associated Guillain-Barré syndrome following acute ZIKV infection. We speculate that although such symptoms may have originated from a direct viral insult, a post-infectious autoimmune mechanism may not be excluded. Physicians should include ZIKV as well as other flaviviruses in their diagnostic workup for all patients with ocular flutter/opsoclonus, after excluding other non-infectious causes of central nervous system pathology. To the best of our knowledge, this is the first report on the association of ocular flutter, GBS, and ZIKV infection. Topics: Acyclovir; Antibodies, Viral; Antiviral Agents; Ataxia; Female; Guillain-Barre Syndrome; Humans; Immunoglobulins, Intravenous; Ocular Motility Disorders; Young Adult; Zika Virus; Zika Virus Infection | 2017 |