acy-738 has been researched along with Alzheimer-Disease* in 2 studies
2 review(s) available for acy-738 and Alzheimer-Disease
Article | Year |
---|---|
Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance.
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD. Topics: Alzheimer Disease; Animals; Benzodioxoles; Cholinesterase Inhibitors; Cholinesterases; Curcumin; Humans; Molecular Targeted Therapy; Neurofibrillary Tangles; Neuroprotective Agents; Phosphorylation; Plaque, Amyloid; Protein Aggregation, Pathological; Protein Processing, Post-Translational; Quinazolines; Receptors, N-Methyl-D-Aspartate; tau Proteins; Thiadiazoles | 2021 |
Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020).
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is characterized by the primary risk factor, age. Several attempts have been made to treat AD, while most of them end in failure. However, with the deepening study of pathogenesis of AD, the expression of HDAC6 in the hippocampus, which plays a major role of the memory formation, is becoming worth of notice. Neurofibrillary tangles (NFTs), a remarkable lesion in AD, has been characterized in association with the abnormal accumulation of hyperphosphorylated Tau, which is mainly caused by the high expression of HDAC6. On the other hand, the hypoacetylated tubulin induced by HDAC6 is also fatal for the neuronal transport, which is the key impact of the formation of axons and dendrites. Overall, the significantly increased expression of HDAC6 in brain regions is deleterious to neuron survival in AD patients. Based on the above research, the inhibition of HDAC6 seems to be a potential therapeutic method for the treatment of AD. Up to now, various types of HDAC6 inhibitors have been discovered. This review mainly analyzes the HDAC6 inhibitors reported amid 2010-2020 in terms of their structure, selectivity and pharmacological impact towards AD. And we aim at facilitating the design and development of better HDAC6 inhibitors in the future. Topics: Acetamides; Alzheimer Disease; Histone Deacetylase 6; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Models, Molecular; Molecular Structure; Neuroprotective Agents | 2021 |