actinonin has been researched along with Sepsis* in 3 studies
3 other study(ies) available for actinonin and Sepsis
Article | Year |
---|---|
Actinonin, a meprin A inhibitor, protects the renal microcirculation during sepsis.
Sepsis-induced acute kidney injury occurs in 20% to 50% of septic patients and nearly doubles the mortality rate of sepsis. Because treatment in the septic patient is usually begun only after the onset of symptoms, therapy that is effective even when delayed would have the greatest impact on patient survival. The metalloproteinase meprin A, an oligomeric complex made of α- and β-subunits, is highly expressed at the brush-border membranes of the kidney and capable of degrading numerous substrates including extracellular matrix proteins and cytokines. The goal of the present study was to compare the therapeutic potential of actinonin, an inhibitor of meprin A, when administered before and after the onset of sepsis. Mice were treated with actinonin at 30 min before or 7 h after induction of sepsis by cecal ligation and puncture (CLP). Intravital videomicroscopy was used to image renal peritubular capillary perfusion and reactive nitrogen species. Actinonin treatment 30 min before CLP reduced IL-1β levels and prevented the fall in renal capillary perfusion at 7 and 18 h. Actinonin also prevented the fall in renal capillary perfusion even when administered at 7 h after CLP. In addition, even late administration of actinonin preserved renal morphology and lowered blood urea nitrogen and serum creatinine concentrations. These data suggest that agents such as actinonin should be evaluated further as possible therapeutic agents because targeting both the early systemic and later organ-damaging effects of sepsis should have the highest likelihood of success. Topics: Animals; Anti-Bacterial Agents; Hydroxamic Acids; Interleukin-1beta; Kidney; Metalloendopeptidases; Mice; Microcirculation; Renal Circulation; Sepsis | 2011 |
Meprin A and meprin alpha generate biologically functional IL-1beta from pro-IL-1beta.
The present study demonstrates that both oligomeric metalloendopeptidase meprin A purified from kidney cortex and recombinant meprin alpha are capable of generating biologically active IL-1beta from its precursor pro-IL-1beta. Amino-acid sequencing analysis reveals that meprin A and meprin alpha cleave pro-IL-1beta at the His(115)-Asp(116) bond, which is one amino acid N-terminal to the caspase-1 cleavage site and five amino acids C-terminal to the meprin beta site. The biological activity of the pro-IL-1beta cleaved product produced by meprin A, determined by proliferative response of helper T-cells, was 3-fold higher to that of the IL-1beta product produced by meprin beta or caspase-1. In a mouse model of sepsis induced by cecal ligation puncture that results in elevated levels of serum IL-1beta, meprin inhibitor actinonin significantly reduces levels of serum IL-1beta. Meprin A and meprin alpha may therefore play a critical role in the production of active IL-1beta during inflammation and tissue injury. Topics: Amino Acid Sequence; Animals; Disease Models, Animal; Hydroxamic Acids; Interleukin-1; Interleukin-1beta; Kidney Cortex; Metalloendopeptidases; Mice; Molecular Sequence Data; Protein Precursors; Rats; Recombinant Proteins; Sepsis; T-Lymphocytes, Helper-Inducer | 2009 |
Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure.
Sepsis is one of the common causes of acute renal failure (ARF). The objective of this study was to identify new biomarkers and therapeutic targets. We present a new rat model of sepsis-induced ARF based on cecal ligation and puncture (CLP). We used this model to find urinary proteins which may be potential biomarkers and/or drug targets. Aged rats were treated with fluids and antibiotics after CLP. Urinary proteins from septic rats without ARF and urinary proteins from septic rats with ARF were compared by difference in-gel electrophoresis (DIGE). CLP surgery elevated interleukin (IL)-6 and IL-10 serum cytokines and blood nitrite compared with sham-operated rats. However, there was a range of serum creatinine values at 24 h (0.4-2.3 mg/dl) and only 24% developed ARF. Histology confirmed renal injury in these rats. Forty-nine percent of rats did not develop ARF. Rats without ARF also had less liver injury. The mortality rate at 24 h was 27% but was increased by housing the post-surgery rats in metabolic cages. Creatinine clearance and urine output 2-8 h after CLP was significantly reduced in rats which died within 24 h. Using DIGE we identified changes in a number of urinary proteins including albumin, brush-border enzymes (e.g., meprin-1-alpha) and serine protease inhibitors. The meprin-1-alpha inhibitor actinonin prevented ARF in aged mice. In summary, we describe a new rat model of sepsis-induced ARF which has a heterogeneous response similar to humans. This model allowed us to use DIGE to find changes in urinary proteins and this approach identified a potential biomarker and drug target - meprin-1-alpha. Topics: Acute Kidney Injury; Animals; Anti-Bacterial Agents; Biomarkers; Cecum; Cytokines; Disease Models, Animal; Drug Design; Electrophoresis; Hydroxamic Acids; Kidney; Ligation; Liver; Male; Metalloendopeptidases; Mice; Mice, Inbred C57BL; Nitrites; Proteomics; Rats; Rats, Sprague-Dawley; Sepsis | 2006 |