actinonin and Malaria--Falciparum

actinonin has been researched along with Malaria--Falciparum* in 2 studies

Other Studies

2 other study(ies) available for actinonin and Malaria--Falciparum

ArticleYear
Validation of Putative Apicoplast-Targeting Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites.
    Antimicrobial agents and chemotherapy, 2018, Volume: 62, Issue:1

    Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.

    Topics: Antimalarials; Apicoplasts; Azithromycin; Cells, Cultured; Drug Evaluation, Preclinical; Fatty Acids; Heme; Hemiterpenes; Humans; Hydroxamic Acids; Malaria, Falciparum; Organophosphorus Compounds; Plasmodium falciparum; Protozoan Proteins

2018
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
    Journal of biomolecular screening, 2014, Volume: 19, Issue:6

    Infection by Plasmodium falciparum is the leading cause of malaria in humans. The parasite contains a unique and essential plastid-like organelle called the apicoplast that, similar to the mitochondria and chloroplast, houses its own genome that must undergo replication and repair. The putative apicoplast replicative DNA polymerase, POM1, has no direct orthologs in mammals, making the P. falciparum POM1 an attractive antimalarial drug target. Here, we report on a fluorescent high-throughput DNA polymerase assay that relies on the ability of POM1 to perform strand-displacement synthesis through the stem of a DNA hairpin substrate, thereby separating a Cy3 dye from a quencher. Assay-validation experiments were performed using 384-well plates and resulted in a signal window of 7.90 and aZ' factor of 0.71. A pilot screen of a 2880-compound library identified 62 possible inhibitors that cause more than 50% inhibition of polymerase activity. The simplicity and statistical robustness of the assay suggest it is well suited for the screening of novel apicoplast polymerase inhibitors that may serve as lead compounds in antimalarial drug-discovery efforts.

    Topics: Antimalarials; Apicoplasts; Chloroplasts; DNA; DNA-Directed DNA Polymerase; Drug Discovery; Exonucleases; Humans; Kinetics; Malaria, Falciparum; Mitochondria; Multienzyme Complexes; Nucleic Acid Synthesis Inhibitors; Peptide Library; Plasmodium falciparum; Protozoan Proteins; Spectrometry, Fluorescence

2014