acteoside has been researched along with Memory-Disorders* in 6 studies
6 other study(ies) available for acteoside and Memory-Disorders
Article | Year |
---|---|
Acteoside-improved streptozotocin-induced learning and memory impairment by upregulating hippocampal insulin, glucose transport, and energy metabolism.
Alzheimer's disease (AD), a neurodegenerative disease, has been, by and large, correlated to insulin pathway, glucose level, and energy metabolism in the brain. Intracerebroventricular administration of streptozotocin (ICV-STZ) leads to glucose and energy metabolism dysfunction, cognitive impairment, and increased oxidative stress in the brain. Acteoside has a myriad of pharmacological effects on the brain, namely, neuroprotection and recuperation of cognitive functions. The primary focus of the current study was to examine the effect of acteoside on insulin, glucose transport, and energy metabolism in the hippocampal area of the brain. The behavioral experiments such as spatial memory, active learning, and passive memory suggested that acetoside ameliorated the ICV-STZ-induced learning and cognitive impairment. The acteoside induced increase in the protein expression of glucose transporters (Glu T1, Glu T3, and Glu T4), glucose, and insulin levels in the hippocampus for maintaining normal learning and memory function were demonstrated by Western blot. In addition, acteoside's long-term oral administration increased the the ratio of ATP content divided by ADP content (ATP/ADP) ratio, which, in turn, reduced the reactiveoxygen species (ROS) level and improved the cellular oxidative stress response. Compared with the model group, the above results show significant differences in different degrees (p < .05 or p < .01). This study suggests that acteoside can ameliorate the ICV-STZ-induced learning and memory impairment caused due to insulin receptor, insulin receptor substrate 1, Glu T1, Glu T3, and Glu T4 pathways by triggering intracerebral metabolism. Topics: Alzheimer Disease; Animals; Brain; Cognition; Cognitive Dysfunction; Energy Metabolism; Glucose; Glucosides; Hippocampus; Insulin; Male; Maze Learning; Memory Disorders; Phenols; Rats; Rats, Sprague-Dawley; Receptor, Insulin; Streptozocin | 2021 |
Effect and mechanism of verbascoside on hypoxic memory injury in plateau.
Verbascoside is a water-soluble natural phenylethanoid glycoside and distributes widely in plants. It has been proved with antioxidant, neuroprotective, anti-inflammatory, antibacterial, and immunomodulatory bioactivities. In this experiment, the effect and mechanism of verbascoside on hypoxic memory injury were studied in a low-pressure and low-oxygen chamber. Verbascoside (50, 150, and 300 mg/kg) was intragastrically administered once a day for 7 days. On the fourth day, rats were placed in the chamber to simulate a 7,500 m high-altitude environment The eight-arm maze was used to test the memory ability. The levels of MDA, GSH, and T-SOD in plasma, brain-NH, and hippocampus were detected. The mRNA expression of mTOR, P70S6K, and 4E-BP1 in the hippocampus tissue was determined by PCR. The protein expression of P-mTOR, P-P70S6K, P-4E-BP1, and Cleaved Caspase-3 in the hippocampus tissue was determined by western blot. The results indicated that administration with verbascoside could obviously reduce the working memory error, reference memory error, total errors, and total time; relieve the neuron damage in CA Topics: Altitude; Animals; Glucosides; Hippocampus; Hypoxia; Male; Memory Disorders; Phenols; Rats; Rats, Wistar; TOR Serine-Threonine Kinases | 2019 |
Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of D-gal and AlCl3.
Acteoside, also known as verbascoside or orobanchin, is a common compound found in many important medicinal plants including the Chinese herb Cistanche deserticola Y. C. Ma, which is used for its neuroprotective and memory enhancement properties. We have investigated the effects of acteoside using a senescent mouse model induced by a combination of chronic intraperitoneal administration of d-gal (60 mg/kg/day) and oral administration AlCl3 (5 mg/kg/day) once daily for 90 days. After 60 days, acteoside (30, 60, and 120 mg/kg/day) was orally administered once daily for 30 days. The memory enhancing effects of acteoside were evaluated using the Morris water maze test. The results showed that 30-120 mg/kg/day of acteoside reduced the escape latency in finding the platform, and increased the number of crossings of the platform. A 30-120 mg/kg/day of acteoside increased significantly the expression of nerve growth factor and tropomycin receptor kinase A mRNA and protein in the hippocampus, measured using real-time RT-PCR, immunohistochemical analysis, and western blotting. These results support the use of C. deserticola for memory enhancement and indicate that the effects of acteoside are induced via promotion of nerve growth factor and tropomycin receptor kinase A expression. Topics: Administration, Oral; Aging; Aluminum Chloride; Aluminum Compounds; Animals; Chlorides; Cognition Disorders; Disease Models, Animal; Galactose; Glucosides; Hippocampus; Memory; Memory Disorders; Mice; Nerve Growth Factors; Phenols; Receptor, trkA | 2015 |
The Mechanism of Memory Enhancement of Acteoside (Verbascoside) in the Senescent Mouse Model Induced by a Combination of D-gal and AlCl3.
Acteoside (verbsacoside), one of the main active phenylethanoid glycosides from Cistanche deserticola, is known to have antioxidant and neuroprotective activity, and herbs containing it are used to enhance memory. However, there is relatively little direct experimental evidence to support the use of acteoside in Alzheimer's disease (AD). The purpose of this study was to elucidate the effects of acteoside in improving learning and memory, using a mouse model of senescence induced by a combination of d-galactose and AlCl3 , and investigate its potential mechanisms compared with the positive controls vitamin E and piracetam. Acteoside was administered intragastrically at doses of 30, 60 and 120 mg/kg/day for 30 days after AD was induced. Memory function was evaluated using a step-down test. The number of neuron was analysed by haematoxylin and eosin staining and the number of Nissl bodies by Nissl staining. The expression of caspase-3 protein in hippocampus was detected by immunohistochemistry and western blot. Nitric oxide and total nitric oxide synthase level in hippocampus were also assessed. Our results showed that the latency of step down was shortened in AD model mice and the number of errors decreased after treatment with all doses of acteoside. Neurons and Nissl bodies in the hippocampus were increased significantly with higher doses (60 and 120 mg/kg/day) of acteoside. The content of nitric oxide, the activity of nitric oxide synthase and the expression of caspase-3 protein were decreased by 120 mg/kg/day acteoside compared with that of the AD model group. Our results support the results obtained previously using the Morris maze test in the same mouse model of senescence, and the use of traditional medicinal herbs containing acteoside for neuroprotection and memory loss. Topics: Aging; Aluminum Chloride; Aluminum Compounds; Animals; Antioxidants; Caspase 3; Chlorides; Cistanche; Disease Models, Animal; Galactose; Glucosides; Hippocampus; Memory; Memory Disorders; Mice; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase; Phenols; Vitamin E | 2015 |
[Effect of acteoside on learning and memory impairment induced by scopolamine in mice].
To study on the effect of acteoside on learning and memory of dementia mice.. Mice were orally administered with acteoside for 10 days. Scopolamine was used to establish the acquired learning disability in mice. Their learning and memory were detected with a behavioral experiment (step-down test). After the behavior test, corticocerebral and hippocampus tissues of mice were detected with biochemical indexes, including GSH-Px, T-SOD, MDA, TChE and contents of protein in brain tissues.. Mice were administered with acteoside for 10 d in advance to alleviate the acquired learning disability induced by scopolamine. Compared with the model group, acteoside increased the latency period in the step-down test and reduced error times. Besides, acteoside increased the activity of GSH-Px, T-SOD, TChE and protein content in their brain tissues, but decreased MDA content.. Acteoside can significantly alleviate the acquired learning disability in mice induced by scopolamine. Its mechanism may be related with its effect of inhibiting the generation of free radicals in mice and improving the function of the central cholinergic system. Topics: Animals; Behavior, Animal; Brain; Drugs, Chinese Herbal; Glucosides; Glutathione Peroxidase; Learning; Male; Memory Disorders; Mice; Phenols; Scopolamine; Superoxide Dismutase | 2012 |
Acteoside of Callicarpa dichotoma attenuates scopolamine-induced memory impairments.
We previously reported that ten phenylethanoid glycosides including acteoside isolated from the leaves and twigs of Callicarpa dichotoma significantly attenuated glutamate-induced neurotoxicity. In the present study, we examined anti-amnesic activity of acteoside using scopolamine-induced (1 mg/kg body weight, s.c.) amnesic mice with both passive avoidance and Morris water maze tests. Acute oral treatment (single administration prior to scopolamine treatment) of mice with acteoside (1.0, 2.5 mg/kg body weight) significantly mitigated scopolamine-induced memory deficits in the passive avoidance test. It is interesting to note that prolonged oral daily treatment of mice with much lower amount (0.1 mg/kg body weight) of acteoside for 10 d reversed the scopolamine-induced memory deficits. In the Morris water maze, prolonged oral treatment with acteoside (prolonged daily administration of 1.0 mg/kg body weight for 10 d) significantly ameliorated scopolamine-induced memory deficits showing the formation of long-term and/or short-term spatial memory. We suggest, therefore, that acteoside has anti-amnesic activity that may ultimately hold significant therapeutic value in alleviating certain memory impairment observed in Alzheimer's disease. Topics: Animals; Avoidance Learning; Callicarpa; Cognition; Glucosides; Male; Maze Learning; Memory Disorders; Mice; Mice, Inbred ICR; Muscarinic Antagonists; Phenols; Scopolamine | 2006 |