acriflavine has been researched along with Retinal-Neovascularization* in 2 studies
2 other study(ies) available for acriflavine and Retinal-Neovascularization
Article | Year |
---|---|
Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice.
Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease. Topics: Acriflavine; Animals; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Humans; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Retina; Retinal Neovascularization | 2023 |
The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization.
Acriflavine, a fluorescent drug previously used for bacterial and trypanosomal infections, reduces hypoxia-inducible factor-1 (HIF-1) and HIF-2 transcriptional activity. In mice with oxygen-induced ischemic retinopathy, intraocular or intraperitoneal injections of acriflavine caused dose-dependent suppression of retinal neovascularization (NV) and significantly reduced expression of HIF-1-responsive genes. Intraocular injection of 100 ng caused inner retina fluorescence within 1 h that was seen throughout the entire retina between 1 and 5 days, and at 7 days after injection, strongly suppressed choroidal NV at Bruch's membrane rupture sites. After suprachoroidal injection of 300 ng in rats, there was retinal fluorescence in the quadrant of the injection at 1 h that spread throughout the entire retina and choroid by 1 day, was detectable for 5 days, and dramatically reduced choroidal NV 14 days after rupture of Bruch's membrane. After topical administration of acriflavine in mice, fluorescence was seen in the retina and retinal pigmented epithelium within 5 min and was detectable for 6-12 h. Administration of 0.5% drops to the cornea twice a day significantly reduced choroidal NV in mice. Electroretinographic b-wave amplitudes were normal 7 days after intravitreous injection of 100 ng of acriflavine in mice, showed mild threshold reductions at highest stimulus intensities after injection of 250 ng, and more extensive changes after injection of 500 ng. These data provide additional evidence for an important role for HIF-1 in retinal and choroidal NV and suggest that acriflavine can target HIF-1 through a variety of modes of administration and has good potential to provide a novel therapy for retinal and choroidal vascular diseases.. Acriflavine, an inhibitor of HIF-1, suppresses retinal and choroidal neovascularization. HIF-1 plays a critical role in ocular neovascularization. Acriflavine's fluorescence provides a mean to track its entry and exit from the retina. Acriflavine has therapeutic potential for the treatment of ocular neovascularization. Topics: Acriflavine; Animals; Choroidal Neovascularization; Drug Monitoring; Fluorescent Dyes; Hypoxia-Inducible Factor 1; Injections, Intraocular; Male; Mice, Inbred C57BL; Optical Imaging; Rats; Retina; Retinal Neovascularization | 2017 |