acp-196 and Waldenstrom-Macroglobulinemia

acp-196 has been researched along with Waldenstrom-Macroglobulinemia* in 4 studies

Reviews

3 review(s) available for acp-196 and Waldenstrom-Macroglobulinemia

ArticleYear
How to Sequence Therapies in Waldenström Macroglobulinemia.
    Current treatment options in oncology, 2021, 08-23, Volume: 22, Issue:10

    There are multiple treatment options in patients with Waldenström macroglobulinemia, including chemotherapy, monoclonal antibodies, proteasome inhibitors, and covalent Bruton tyrosine kinase (BTK) inhibitors. The choice of therapy should take into account the patient's clinical presentation, comorbidities, and preferences. A thorough discussion should take place to outline the administration, safety, and efficacy of the regimens under consideration. The patient's genomic profile can provide insightful information for the treatment selection. In the frontline and relapsed settings, we favor ibrutinib monotherapy over chemoimmunotherapy or proteasome inhibitor-based regimens in patients with MYD88 and without CXCR4 mutations. For patients with MYD88 and CXCR4 mutations or without MYD88 or CXCR4 mutations, chemoimmunotherapy or proteasome inhibitor-based regimens are favored, but efficacy data with ibrutinib in combination with rituximab and with novel covalent BTK inhibitors are emerging. Autologous stem cell transplant should be considered in special cases in the relapsed setting. Participation in clinical trials is positively encouraged in WM patients in frontline and relapsed settings. Agents of interest include the BCL2 antagonist venetoclax, the CXCR4 inhibitor mavorixafor, and the non-covalent BTK inhibitors pirtobrutinib and ARQ-531.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Antineoplastic Combined Chemotherapy Protocols; Bendamustine Hydrochloride; Benzamides; Humans; Mutation; Myeloid Differentiation Factor 88; Piperidines; Protein Kinase Inhibitors; Pyrazines; Pyrazoles; Pyrimidines; Receptors, CXCR4; Rituximab; Waldenstrom Macroglobulinemia

2021
Zanubrutinib for the treatment of Waldenström Macroglobulinemia.
    Expert review of hematology, 2020, Volume: 13, Issue:12

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Antineoplastic Agents; Atrial Fibrillation; Benzamides; Central Nervous System Diseases; Clinical Trials as Topic; Febrile Neutropenia; Gastrointestinal Diseases; Gene Expression Regulation, Neoplastic; Humans; Multicenter Studies as Topic; Myeloid Differentiation Factor 88; Neoplasm Proteins; NF-kappa B; Piperidines; Progression-Free Survival; Protein Kinase Inhibitors; Pyrazines; Pyrazoles; Pyrimidines; Quality of Life; Receptors, CXCR4; Recurrence; Salvage Therapy; Signal Transduction; Treatment Outcome; Waldenstrom Macroglobulinemia

2020
What is new in the treatment of Waldenstrom macroglobulinemia?
    Leukemia, 2019, Volume: 33, Issue:11

    Waldenstrom macroglobulinemia (WM) is a rare type of non-Hodgkin lymphoma. The diagnosis of WM is established by the presence of lymphoplasmacytic lymphoma in the bone marrow or other organs, a monoclonal IgM paraproteinemia and the recurrent MYD88 L265P somatic mutation. Some patients with WM can be asymptomatic, in which case treatment is not indicated. However, most patients with WM will become symptomatic during the course of the disease, due to anemia, hyperviscosity, neuropathy, or other processes, necessitating therapy. Current treatment options for symptomatic WM patients include alkylating agents, proteasome inhibitors and anti-CD20 monoclonal antibodies. The approval of the oral Bruton tyrosine kinase (BTK) inhibitor ibrutinib alone and in combination with rituximab has expanded the treatment options for WM patients. The present Perspective would focus on exciting treatment strategies under development for WM patients, such as proteasome inhibitors (e.g., ixazomib), BTK inhibitors (e.g., acalabrutinib, zanubrutinib, vecabrutinib), BCL2 inhibitors (e.g., venetoclax), and anti-CXCR4 antibodies (e.g., ulocuplumab), among others. It is certainly an exciting time for WM therapy development with novel and promising treatment options in the horizon.

    Topics: Adenine; Antibodies, Monoclonal; Antigens, CD20; Benzamides; Bone Marrow; Disease-Free Survival; Hematology; Humans; Immunoglobulin M; Mutation; Piperidines; Proteasome Inhibitors; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Pyrazoles; Pyrimidines; Quality of Life; Waldenstrom Macroglobulinemia

2019

Trials

1 trial(s) available for acp-196 and Waldenstrom-Macroglobulinemia

ArticleYear
Acalabrutinib monotherapy in patients with Waldenström macroglobulinemia: a single-arm, multicentre, phase 2 study.
    The Lancet. Haematology, 2020, Volume: 7, Issue:2

    Chemoimmunotherapy is typically the standard of care for patients with Waldenström macroglobulinemia; however, infectious and hematologic toxic effects are problematic. Acalabrutinib is a selective, potent Bruton tyrosine-kinase inhibitor. The aim of this trial was to evaluate the activity and safety of acalabrutinib in patients with Waldenström macroglobulinemia.. This single-arm, multicentre, phase 2 trial was done in 19 European academic centres in France, Italy, Greece, the Netherlands, and the UK, and eight academic centres in the USA. Eligible patients were 18 years or older and had treatment naive (declined or not eligible for chemoimmunotherapy) or relapsed or refractory (at least one previous therapy) Waldenström macroglobulinemia that required treatment, an Eastern Cooperative Oncology Group performance status of 2 or less, and received no previous Bruton tyrosine-kinase inhibitor therapy. Patients received 100 mg oral acalabrutinib twice per day in 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed overall response (at least a minor response) according to the 6th International Workshop for Waldenström Macroglobulinemia (IWWM) and the modified 3rd IWWM workshop criteria. The primary outcome and safety were assessed in all patients who received at least one dose of treatment. This study is registered with ClinicalTrials.gov, number NCT02180724, and is ongoing, but no longer enrolling.. Between Sept 8, 2014, and Dec 24, 2015, 122 patients were assessed for eligibility, of which 106 (87%) patients were given acalabrutinib (14 were treatment naive and 92 had relapsed or refractory disease). With a median follow-up of 27·4 months (IQR 26·0-29·7), 13 (93% [95% CI 66-100]) of 14 treatment naive patients achieved an overall response and 86 (93% [86-98]) of 92 relapsed or refractory patients per both the modified 3rd and 6th IWWM criteria. Seven (50%) of 14 treatment naive patients and 23 (25%) of 92 relapsed or refractory patients discontinued treatment on study. Grade 3-4 adverse events occurring in more than 5% of patients were neutropenia (17 [16%] of 106 patients) and pneumonia (7 [7%]). Grade 3-4 atrial fibrillation occurred in one (1%) patient and grade 3-4 bleeding occurred in three (3%) patients. The most common serious adverse events were lower respiratory tract infection (n=7 [7%]), pneumonia (n=7 [7%]), pyrexia (n=4 [4%]), cellulitis (n=3 [3%]), fall (n=3 [3%]), and sepsis (n=3 [3%]). Pneumonia (n=5 [5%]) and lower respiratory tract infection (n=4 [4%]) were considered treatment related. One treatment-related death was reported (intracranial hematoma).. This study provides evidence that acalabrutinib is active as single-agent therapy with a manageable safety profile in patients with treatment-naive, or relapse or refractory Waldenström macroglobulinemia. Further studies are needed to establish its efficacy against current standard treatments and to investigate whether outcomes can be improved with combination therapies.. Acerta Pharma.

    Topics: Agammaglobulinaemia Tyrosine Kinase; Aged; Antineoplastic Agents; Benzamides; Female; Gastrointestinal Diseases; Humans; Male; Middle Aged; Molecular Targeted Therapy; Myeloid Differentiation Factor 88; Neoplasm Proteins; Neutropenia; Pain; Protein Kinase Inhibitors; Pyrazines; Quality of Life; Recurrence; Respiratory Tract Infections; Salvage Therapy; Treatment Outcome; Waldenstrom Macroglobulinemia

2020