acp-196 and Atrial-Fibrillation

acp-196 has been researched along with Atrial-Fibrillation* in 5 studies

Reviews

1 review(s) available for acp-196 and Atrial-Fibrillation

ArticleYear
Zanubrutinib for the treatment of Waldenström Macroglobulinemia.
    Expert review of hematology, 2020, Volume: 13, Issue:12

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Antineoplastic Agents; Atrial Fibrillation; Benzamides; Central Nervous System Diseases; Clinical Trials as Topic; Febrile Neutropenia; Gastrointestinal Diseases; Gene Expression Regulation, Neoplastic; Humans; Multicenter Studies as Topic; Myeloid Differentiation Factor 88; Neoplasm Proteins; NF-kappa B; Piperidines; Progression-Free Survival; Protein Kinase Inhibitors; Pyrazines; Pyrazoles; Pyrimidines; Quality of Life; Receptors, CXCR4; Recurrence; Salvage Therapy; Signal Transduction; Treatment Outcome; Waldenstrom Macroglobulinemia

2020

Trials

2 trial(s) available for acp-196 and Atrial-Fibrillation

ArticleYear
Zanubrutinib in patients with previously treated B-cell malignancies intolerant of previous Bruton tyrosine kinase inhibitors in the USA: a phase 2, open-label, single-arm study.
    The Lancet. Haematology, 2023, Volume: 10, Issue:1

    We hypothesised that zanubrutinib, a highly selective next-generation Bruton tyrosine kinase (BTK) inhibitor, would be a safe and active treatment for patients intolerant of ibrutinib, acalabrutinib, or both. We aimed to assess whether zanubrutinib would prolong treatment duration by minimising treatment-related toxicities and discontinuations in patients with previously treated B-cell malignancies.. This ongoing, phase 2, multicentre, open-label, single-arm study was done in 20 centres in the USA. Patients aged 18 or older with previously treated B-cell malignancies (chronic lymphocytic leukaemia, small lymphocytic lymphoma, mantle cell lymphoma, Waldenström macroglobulinaemia, or marginal zone lymphoma) who became intolerant of ibrutinib, acalabrutinib, or both, were orally administered zanubrutinib 160 mg twice daily or 320 mg once daily per investigator. The primary endpoint was recurrence and change in severity of ibrutinib or acalabrutinib intolerance events based on investigator-assessed adverse events. Secondary endpoints were investigator-assessed overall response rate; duration of response; disease control rate; and progression-free survival. Analyses included all patients who received any dose of the study drug. This study is registered with ClinicalTrials.gov, NCT04116437.. Between Oct 14, 2019, and Sept 8, 2021, 67 patients (36 [54%] men and 31 [46%] women) who were intolerant of ibrutinib (n=57; cohort 1) or of acalabrutinib or acalabrutinib and ibrutinib (n=10; cohort 2) were enrolled. 63 (94%) patients were White, one (2%) had multiple ethnicities, and three (5%) had unreported or unknown ethnicity. Most intolerance events (81 [70%] of 115 for ibrutinib; 15 [83%] of 18 for acalabrutinib) did not recur with zanubrutinib. Of the recurring events, seven (21%) of 34 ibrutinib intolerance events and two (67%) of three acalabrutinib intolerance events recurred at the same severity with zanubrutinib; 27 (79%) ibrutinib intolerance events and one (33%) acalabrutinib intolerance event recurred at a lower severity with zanubrutinib. No events recurred at higher severity. No grade 4 intolerance events recurred. 64 (96%) of 67 patients had one or more adverse events with zanubrutinib; the most common adverse events were contusion (in 15 [22%] of 67 patients), fatigue (14 [21%]), myalgia (ten [15%]), arthralgia (nine [13%]), and diarrhoea (nine [13%]). Atrial fibrillation occurred in three (4%) patients (all grade 2). Eight (12%) of 67 patients had serious adverse events (anaemia, atrial fibrillation, bronchitis, COVID-19, COVID-19 pneumonia, febrile neutropenia, salmonella gastroenteritis, transfusion reaction, trigeminal nerve disorder, and urinary tract infection). No treatment-related deaths occurred. The median follow-up time was 12·0 months (IQR 8·2-15·6). Among the 64 efficacy-evaluable patients, disease control rate was 93·8% (60; 95% CI 84·8-98·3) and overall response rate was 64·1% (41; 95% CI 51·1-75·7). The median duration of response was not reached; the 12-month event-free duration of response rate was 95·0% (95% CI 69·5-99·3). Similarly, median progression-free survival was not reached; 18-month progression-free survival was 83·8% (95% CI 62·6-93·6).. Patients intolerant of previous BTK inhibitors have limited treatment options. These results suggest that zanubrutinib, a safe and viable treatment for patients with B-cell malignancies, might fill that unmet need for those who exhibit intolerance to ibrutinib or acalabrutinib.. BeiGene.

    Topics: Adult; Agammaglobulinaemia Tyrosine Kinase; Atrial Fibrillation; COVID-19; Female; Humans; Leukemia, Lymphocytic, Chronic, B-Cell; Male; Protein Kinase Inhibitors; Tyrosine Kinase Inhibitors

2023
Detailed safety profile of acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial.
    Blood, 2023, 08-24, Volume: 142, Issue:8

    ELEVATE-RR demonstrated noninferior progression-free survival and lower incidence of key adverse events (AEs) with acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia. We further characterize AEs of acalabrutinib and ibrutinib via post hoc analysis. Overall and exposure-adjusted incidence rate was assessed for common Bruton tyrosine kinase inhibitor-associated AEs and for selected events of clinical interest (ECIs). AE burden scores based on previously published methodology were calculated for AEs overall and selected ECIs. Safety analyses included 529 patients (acalabrutinib, n = 266; ibrutinib, n = 263). Among common AEs, incidences of any-grade diarrhea, arthralgia, urinary tract infection, back pain, muscle spasms, and dyspepsia were higher with ibrutinib, with 1.5- to 4.1-fold higher exposure-adjusted incidence rates. Incidences of headache and cough were higher with acalabrutinib, with 1.6- and 1.2-fold higher exposure-adjusted incidence rate, respectively. Among ECIs, incidences of any-grade atrial fibrillation/flutter, hypertension, and bleeding were higher with ibrutinib, as were exposure-adjusted incidence rates (2.0-, 2.8-, and 1.6-fold, respectively); incidences of cardiac events overall (the Medical Dictionary for Regulatory Activities system organ class) and infections were similar between arms. Rate of discontinuation because of AEs was lower for acalabrutinib (hazard ratio, 0.62; 95% confidence interval, 0.41-0.93). AE burden score was higher for ibrutinib vs acalabrutinib overall and for the ECIs atrial fibrillation/flutter, hypertension, and bleeding. A limitation of this analysis is its open-label study design, which may influence the reporting of more subjective AEs. Overall, event-based analyses and AE burden scores demonstrated higher AE burden overall and specifically for atrial fibrillation, hypertension, and hemorrhage with ibrutinib vs acalabrutinib. This trial was registered at www.clinicaltrials.gov as #NCT02477696.

    Topics: Atrial Fibrillation; Hemorrhage; Humans; Hypertension; Leukemia, Lymphocytic, Chronic, B-Cell; Protein Kinase Inhibitors

2023

Other Studies

2 other study(ies) available for acp-196 and Atrial-Fibrillation

ArticleYear
Cardiovascular adverse events in patients with chronic lymphocytic leukemia receiving acalabrutinib monotherapy: pooled analysis of 762 patients.
    Haematologica, 2022, 06-01, Volume: 107, Issue:6

    Cardiovascular (CV) toxicities of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib may limit use of this effective therapy in patients with chronic lymphocytic leukemia (CLL). Acalabrutinib is a second-generation BTK inhibitor with greater BTK selectivity. This analysis characterizes pooled CV adverse events (AE) data in patients with CLL who received acalabrutinib monotherapy in clinical trials (clinicaltrials gov. Identifier: NCT02029443, NCT02475681, NCT02970318 and NCT02337829). Acalabrutinib was given orally at total daily doses of 100-400 mg, later switched to 100 mg twice daily, and continued until disease progression or toxicity. Data from 762 patients (median age: 67 years [range, 32-89]; median follow-up: 25.9 months [range, 0-58.5]) were analyzed. Cardiac AE of any grade were reported in 129 patients (17%; grade ≥3, n=37 [5%]) and led to treatment discontinuation in seven patients (1%). The most common any-grade cardiac AE were atrial fibrillation/flutter (5%), palpitations (3%), and tachycardia (2%). Overall, 91% of patients with cardiac AE had CV risk factors before acalabrutinib treatment. Among 38 patients with atrial fibrillation/flutter events, seven (18%) had prior history of arrhythmia or atrial fibrillation/flutter. Hypertension AE were reported in 67 patients (9%), 43 (64%) of whom had a preexisting history of hypertension; no patients discontinued treatment due to hypertension. No sudden cardiac deaths were reported. Overall, these data demonstrate a low incidence of new-onset cardiac AE with acalabrutinib in patients with CLL. Findings from the head-to-head, randomized trial of ibrutinib and acalabrutinib in patients with highrisk CLL (clinicaltrials gov. Identifier: NCT02477696) prospectively assess differences in CV toxicity between the two agents.

    Topics: Aged; Atrial Fibrillation; Benzamides; Humans; Hypertension; Leukemia, Lymphocytic, Chronic, B-Cell; Protein Kinase Inhibitors; Pyrazines

2022
Distinct Effects of Ibrutinib and Acalabrutinib on Mouse Atrial and Sinoatrial Node Electrophysiology and Arrhythmogenesis.
    Journal of the American Heart Association, 2021, 11-16, Volume: 10, Issue:22

    Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B-cell lymphoproliferative disorders. Ibrutinib is associated with new-onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high-resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch-clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose-dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na

    Topics: Action Potentials; Adenine; Animals; Arrhythmias, Cardiac; Atrial Fibrillation; Benzamides; Cardiac Electrophysiology; Mice; Myocytes, Cardiac; Piperidines; Pyrazines; Sinoatrial Node

2021