aconitine and Neuralgia

aconitine has been researched along with Neuralgia* in 8 studies

Other Studies

8 other study(ies) available for aconitine and Neuralgia

ArticleYear
Isotalatizidine, a C
    Journal of neuroinflammation, 2020, Jan-10, Volume: 17, Issue:1

    Isotalatizidine is a representative C. A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence.. Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments.. Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.

    Topics: Aconitine; Analgesics; Animals; Chronic Pain; Cyclic AMP Response Element-Binding Protein; Dynorphins; MAP Kinase Signaling System; Mice; Microglia; Neuralgia; Signal Transduction

2020
Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal α7 nicotinic acetylcholine receptors.
    Biochemical and biophysical research communications, 2020, 05-14, Volume: 525, Issue:4

    Lemairamin (also known as wgx-50), is isolated from the pericarps of the Zanthoxylum plants. As an agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), it can reduce neuroinflammation in Alzheimer's disease. This study evaluated its antinociceptive effects in pain hypersensitivity and explored the underlying mechanisms. The data showed that subcutaneous lemairamin injection dose-dependently inhibited formalin-induced tonic pain but not acute nociception in mice and rats, while intrathecal lemairamin injection also dose-dependently produced mechanical antiallodynia in the ipsilateral hindpaws of neuropathic and bone cancer pain rats without affecting mechanical thresholds in the contralateral hindpaws. Multiple bi-daily lemairamin injections for 7 days did not induce mechanical antiallodynic tolerance in neuropathic rats. Moreover, the antinociceptive effects of lemairamin in formalin-induced tonic pain and mechanical antiallodynia in neuropathic pain were suppressed by the α7nAChR antagonist methyllycaconitine. In an α7nAChR antagonist-reversible manner, intrathecal lemairamin also stimulated spinal expression of IL-10 and β-endorphin, while lemairamin treatment induced IL-10 and β-endorphin expression in primary spinal microglial cells. In addition, intrathecal injection of a microglial activation inhibitor minocycline, anti-IL-10 antibody, anti-β-endorphin antiserum or μ-opioid receptor-preferred antagonist naloxone was all able to block lemairamin-induced mechanical antiallodynia in neuropathic pain. These data demonstrated that lemairamin could produce antinociception in pain hypersensitivity through the spinal IL-10/β-endorphin pathway following α7nAChR activation.

    Topics: Aconitine; Acrylamides; alpha7 Nicotinic Acetylcholine Receptor; Analgesics; Animals; beta-Endorphin; Cancer Pain; Female; Formaldehyde; Hyperalgesia; Injections, Spinal; Interleukin-10; Male; Mice; Microglia; Minocycline; Naloxone; Neuralgia; Rats; Rats, Wistar; Spinal Cord; Zanthoxylum

2020
Activation of alpha7 acetylcholine receptors reduces neuropathic pain by decreasing dynorphin A release from microglia.
    Brain research, 2019, 07-15, Volume: 1715

    Dynorphin A is increased in neuropathic pain models. Activation of α7 n acetylcholine receptor (nAchR) reduces inflammation and pain. Whether activation of α7 nAchR affects dynorphin A release is unknown. The experiments evaluated the proinflammatory effect of dynorphin A in the spinal nerve ligation-induced neuropathic pain models and the effect of α7 nAchR activation on the dynorphin A content. α7 nAchR agonist, PHA-543613 and its antagonist, methyllycaconitine citrate were used and dynorphin A content was measured after spinal nerve ligation and in microglia cultures to test the analgesic mechanisms of α7 nAchR activation. The results showed that dynorphin A content peaked 3 to 7 days after nerve injury, and dynorphin A anti-serum intrathecal injection decreased IL-β and TNF-α content a week after nerve injury. Activation of α7 nAchR by PHA-543613 alleviated neuropathic pain behaviors and decreased dynorphin A concentration in the ipsilateral spinal cords. Also, PHA-543613 decreased dynorphin A release from the microglia cultures to LPS stimulation by activation of α7 nAchR. Our results suggest that dynorphin A contribute to the development and maintenance of neuropathic pain and that decreasing dynorphin A content by activation of α7 AchR of microglia is a potential therapeutic target for treating neuropathic pain.

    Topics: Aconitine; alpha7 Nicotinic Acetylcholine Receptor; Animals; Bridged Bicyclo Compounds, Heterocyclic; Dynorphins; Injections, Spinal; Male; Microglia; Neuralgia; Nicotinic Agonists; Nicotinic Antagonists; Quinuclidines; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Nerves

2019
Neoline is the active ingredient of processed aconite root against murine peripheral neuropathic pain model, and its pharmacokinetics in rats.
    Journal of ethnopharmacology, 2019, Sep-15, Volume: 241

    Processed aconite root (PA), the root of Aconitum carmichaeli (Ranunculaceae), is a crude drug used in traditional Chinese or Japanese kampo medicine to treat pain associated with coldness. In our previous study, PA and its active ingredient, neoline, alleviated oxaliplatin-induced peripheral neuropathy in mice.. The present study investigated the effects of PA on a murine peripheral neuropathy model induced by intraperitoneal injection of paclitaxel and partial ligation of the sciatic nerve (Seltzer model), and identified its active ingredients.. PA powder (1 g/kg/day) was orally administered, and either neoline or benzoylmesaconine (10 mg/kg/day) was subcutaneously injected into the murine model. Mechanical hyperalgesia was evaluated via the von Frey filament method. PA extract was orally administered to rats; blood samples were chronologically collected, and the plasma concentrations of Aconitum alkaloids were measured. The contents of Aconitum alkaloids in commercial PA products were also measured.. PA extract and neoline significantly attenuated the mechanical hyperalgesia induced by either paclitaxel or partial ligation of the sciatic nerve in mice. In the plasma samples of rats treated with PA extract, higher concentrations of benzoylmesaconine and neoline were apparent among Aconitum alkaloids. The contents of benzoylmesaconine and neoline varied among PA products with different processing procedures. Subcutaneous injection of benzoylmesaconine did not attenuate the hyperalgesia induced by each paclitaxel, partial ligation of the sciatic nerve, or oxaliplatin in mice.. The present results indicate that PA and its active ingredient, neoline, are promising agents for the alleviation of neuropathic pain. Neoline can be used as a marker compound to determine the quality of the PA products for the treatment of neuropathic pain.

    Topics: Aconitine; Aconitum; Analgesics; Animals; Antineoplastic Agents, Phytogenic; Hyperalgesia; Male; Mice; Neuralgia; Paclitaxel; Peripheral Nerve Injuries; Plant Roots; Rats, Wistar; Sciatic Nerve

2019
Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain.
    Biochemical and biophysical research communications, 2018, 05-15, Volume: 499, Issue:3

    Topics: Aconitine; Alkaloids; Animals; Cell Survival; Cells, Cultured; Clodronic Acid; Exenatide; Female; Hyperalgesia; Injections, Spinal; Liposomes; Male; Microglia; Neuralgia; Peptides; Rats, Wistar; Spinal Cord; Venoms

2018
Bulleyaconitine A preferably reduces tetrodotoxin-sensitive sodium current in uninjured dorsal root ganglion neurons of neuropathic rats probably via inhibition of protein kinase C.
    Pain, 2017, Volume: 158, Issue:11

    Oral Bulleyaconitine A (BLA) is effective for treating neuropathic pain in human patients, but the underlying mechanism is poorly understood. Here, we tested whether BLA blocked voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons. Compelling evidence shows that voltage-gated sodium channels are upregulated in uninjured DRG neurons but downregulated in injured ones following peripheral nerve injury. We found that BLA preferably inhibited Na currents in uninjured DRG neurons in neuropathic rats. Compared to sham rats, IC50 values for resting and inactivated Na currents were 113 and 74 times lower in injured and uninjured neurons of L4-6 DRGs in spared nerve injury (SNI) rats (4.55 and 0.56 nM) and were 688 and 518 times lower in the uninjured L4 and L6 DRG neurons of L5 spinal nerve ligation (L5-SNL) rats. The use-dependent blockage of BLA on Na currents was more potent in neuropathic rats compared to sham rats. Bulleyaconitine A facilitated the inactivation of Na channels in each group. IC50 values for resting and inactivated tetrodotoxin-sensitive (TTX-S) channels were 1855 and 1843 times lower than those for TTX-resistant channels in the uninjured neurons of L5 spinal nerve ligation rats. The upregulation of protein kinase C was associated with the preferable effect of BLA on TTX-S Na channels in the uninjured DRG neurons. Local application of BLA onto L4-6 DRGs at 0.1 to 10 nM dose-dependently alleviated the mechanical allodynia and thermal hyperalgesia in L5 spinal nerve ligation model. Thus, preferable blockage of TTX-S Na channels in uninjured DRG neurons may contribute to BLA's antineuropathic pain effect.

    Topics: Aconitine; Animals; Cadmium Chloride; Disease Models, Animal; Electric Stimulation; Enzyme Inhibitors; Ganglia, Spinal; Gene Expression Regulation; Hyperalgesia; Male; Neuralgia; Patch-Clamp Techniques; Protein Kinase C; Rats; Rats, Sprague-Dawley; Sensory Receptor Cells; Sodium Channel Blockers; Tetrodotoxin; Time Factors; Voltage-Gated Sodium Channels

2017
Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats.
    Experimental neurology, 2015, Volume: 273

    Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect.

    Topics: Aconitine; Analysis of Variance; Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Evoked Potentials; Hyperalgesia; In Vitro Techniques; Male; Nerve Fibers, Unmyelinated; Neuralgia; Paclitaxel; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Spinal Cord Dorsal Horn; Synaptic Potentials; Time Factors

2015
Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.
    Neurochemistry international, 2011, Volume: 58, Issue:5

    ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI.

    Topics: Aconitine; Animals; Ganglia, Spinal; Male; Neuralgia; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2X3

2011