aconitine and Cancer-Pain

aconitine has been researched along with Cancer-Pain* in 2 studies

Other Studies

2 other study(ies) available for aconitine and Cancer-Pain

ArticleYear
Aconitine - A promising candidate for treating cold and mechanical allodynia in cancer induced bone pain.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2023, Volume: 161

    Patients suffering from cancer induced bone pain (CIBP) have a poor quality of life that is exacerbated by the lack of effective therapeutic drugs. Monkshood is a flowering plant that has been used in traditional Chinese medicine where it has been used to relieve cold pain. Aconitine is the active component of monkshood, but the molecular mechanism for how this compound reduces pain is unclear.. In this study, we employed molecular and behavioral experiments to explore the analgesic effect of aconitine. We observed aconitine alleviated cold hyperalgesia and AITC (allyl-isothiocyanate, TRPA1 agonist) induced pain. Interestingly, we found aconitine directly inhibits TRPA1 activity in calcium imaging studies. More importantly, we found aconitine alleviated cold and mechanical allodynia in CIBP mice. Both the activity and expression of TRPA1 in L4 and L5 DRG (Dorsal Root Ganglion) neurons were reduced with the treatment of aconitine in the CIBP model. Moreover, we observed aconiti radix (AR) and aconiti kusnezoffii radix (AKR), both components of monkshood that contain aconitine, alleviated cold hyperalgesia and AITC induced pain. Furthermore, both AR and AKR alleviated CIBP induced cold allodynia and mechanical allodynia.. Taken together, aconitine alleviates both cold and mechanical allodynia in cancer induced bone pain via the regulation of TRPA1. This research on the analgesic effect of aconitine in cancer induced bone pain highlights a component of a traditional Chinese medicine may have clinical applications for pain.

    Topics: Aconitine; Analgesics; Animals; Cancer Pain; Hyperalgesia; Mice; Neoplasms; Pain; Quality of Life; TRPA1 Cation Channel

2023
Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal α7 nicotinic acetylcholine receptors.
    Biochemical and biophysical research communications, 2020, 05-14, Volume: 525, Issue:4

    Lemairamin (also known as wgx-50), is isolated from the pericarps of the Zanthoxylum plants. As an agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), it can reduce neuroinflammation in Alzheimer's disease. This study evaluated its antinociceptive effects in pain hypersensitivity and explored the underlying mechanisms. The data showed that subcutaneous lemairamin injection dose-dependently inhibited formalin-induced tonic pain but not acute nociception in mice and rats, while intrathecal lemairamin injection also dose-dependently produced mechanical antiallodynia in the ipsilateral hindpaws of neuropathic and bone cancer pain rats without affecting mechanical thresholds in the contralateral hindpaws. Multiple bi-daily lemairamin injections for 7 days did not induce mechanical antiallodynic tolerance in neuropathic rats. Moreover, the antinociceptive effects of lemairamin in formalin-induced tonic pain and mechanical antiallodynia in neuropathic pain were suppressed by the α7nAChR antagonist methyllycaconitine. In an α7nAChR antagonist-reversible manner, intrathecal lemairamin also stimulated spinal expression of IL-10 and β-endorphin, while lemairamin treatment induced IL-10 and β-endorphin expression in primary spinal microglial cells. In addition, intrathecal injection of a microglial activation inhibitor minocycline, anti-IL-10 antibody, anti-β-endorphin antiserum or μ-opioid receptor-preferred antagonist naloxone was all able to block lemairamin-induced mechanical antiallodynia in neuropathic pain. These data demonstrated that lemairamin could produce antinociception in pain hypersensitivity through the spinal IL-10/β-endorphin pathway following α7nAChR activation.

    Topics: Aconitine; Acrylamides; alpha7 Nicotinic Acetylcholine Receptor; Analgesics; Animals; beta-Endorphin; Cancer Pain; Female; Formaldehyde; Hyperalgesia; Injections, Spinal; Interleukin-10; Male; Mice; Microglia; Minocycline; Naloxone; Neuralgia; Rats; Rats, Wistar; Spinal Cord; Zanthoxylum

2020