aclidinium-bromide has been researched along with Inflammation* in 4 studies
4 other study(ies) available for aclidinium-bromide and Inflammation
Article | Year |
---|---|
Budesonide, Aclidinium and Formoterol in combination limit inflammaging processes in bronchial epithelial cells exposed to cigarette smoke.
Inflammation and cellular senescence (also called inflammaging) are involved in the pathogenesis of premature lung aging, a key driver of chronic obstructive pulmonary disease (COPD). Downregulation of histone deacetylases and FoxO3 expression, activation of the ERK 1/2 pathway and IL-8 increase are hallmarks of lung inflammaging. The effects of Budesonide (BUD), Aclidinium (ACL) and Formoterol (FO) on lung inflammaging are unknown. This study was aimed to assess the effects of BUD, ACL and FO in bronchial epithelial cells exposed to cigarette smoke extract (CSE) by evaluating: a) Expression of TLR4 and survivin and LPS binding by flow cytometry; b) expression of HDAC2, HDAC3, SIRT1 and FoxO3 and activation of the ERK 1/2 pathway by western blot; c) IL-8 mRNA levels and release by Real Time-PCR and ELISA, respectively. Reported results show that CSE increased TLR4 and survivin, LPS binding, ERK 1/2 activation, IL-8 release and mRNA levels but decreased SIRT1, HDAC2, HDAC3 and FoxO3 nuclear expression. Combined therapy with BUD, ACL and FO counteracted the effects of CSE on LPS binding, FoxO3 nuclear expression, ERK 1/2 activation, survivin and IL-8 release and mRNA levels. These findings suggest a new role of combination therapy with BUD, ACL and FO in counteracting inflammaging processes induced by cigarette smoke exposure. Topics: Bronchi; Budesonide; Cells, Cultured; Cellular Senescence; Epithelial Cells; Extracellular Signal-Regulated MAP Kinases; Forkhead Box Protein O3; Formoterol Fumarate; Humans; Inflammation; Lipopolysaccharides; Nicotiana; Sirtuin 1; Smoke; Toll-Like Receptor 4; Tropanes | 2019 |
Effects of aclidinium bromide in a cigarette smoke-exposed Guinea pig model of chronic obstructive pulmonary disease.
Long-acting muscarinic antagonists are widely used to treat chronic obstructive pulmonary disease (COPD). In addition to bronchodilation, muscarinic antagonism may affect pulmonary histopathological changes. The effects of long-acting muscarinic antagonists have not been thoroughly evaluated in experimental models of COPD induced by chronic exposure to cigarette smoke (CS). We investigated the effects of aclidinium bromide on pulmonary function, airway remodeling, and lung inflammation in a CS-exposed model of COPD. A total of 36 guinea pigs were exposed to CS and 22 were sham exposed for 24 weeks. Animals were nebulized daily with vehicle, 10 μg/ml, or 30 μg/ml aclidinium, resulting in six experimental groups. Pulmonary function was assessed weekly by whole-body plethysmography, determining the enhanced pause (Penh) at baseline, after treatment, and after CS/sham exposure. Lung changes were evaluated by morphometry and immunohistochemistry. CS exposure increased Penh in all conditions. CS-exposed animals treated with aclidinium showed lower baseline Penh than untreated animals (P = 0.02). CS induced thickening of all bronchial wall layers, airspace enlargement, and inflammatory cell infiltrate in airways and septa. Treatment with aclidinium abrogated the CS-induced smooth muscle enlargement in small airways (P = 0.001), and tended to reduce airspace enlargement (P = 0.054). Aclidinium also attenuated CS-induced neutrophilia in alveolar septa (P = 0.04). We conclude that, in guinea pigs chronically exposed to CS, aclidinium has an antiremodeling effect on small airways, which is associated with improved respiratory function, and attenuates neutrophilic infiltration in alveolar septa. These results indicate that, in COPD, aclidinium may exert beneficial effects on lung structure in addition to its bronchodilator action. Topics: Airway Remodeling; Animals; Disease Models, Animal; Guinea Pigs; Inflammation; Lung; Male; Muscarinic Antagonists; Nicotiana; Pulmonary Disease, Chronic Obstructive; Smoke; Tropanes | 2014 |
Aclidinium inhibits cigarette smoke-induced lung fibroblast-to-myofibroblast transition.
Cigarette smoking contributes to lung remodelling in chronic obstructive pulmonary disease (COPD). As part of this remodelling, peribronchiolar fibrosis is observed in the small airways of COPD patients and contributes to airway obstruction. Fibroblast-to-myofibroblast transition is a key step in peribronchiolar fibrosis formation. This in vitro study examined the effect of cigarette smoke on bronchial fibroblast-to-myofibroblast transition, and whether aclidinium bromide inhibits this process. Human bronchial fibroblasts were incubated with aclidinium bromide (10(-9)-10(-7) M) and exposed to cigarette smoke extract. Collagen type I and α-smooth muscle actin (α-SMA) expression were measured by real-time PCR and Western blotting, as myofibroblast markers. Intracellular reactive oxygen species, cyclic AMP (cAMP), extracellular signal-regulated kinase (ERK)1/2 and choline acetyltransferase were measured as intracellular signalling mediators. Cigarette smoke-induced collagen type I and α-SMA was mediated by the production of reactive oxygen species, the depletion of intracellular cAMP and the increase of ERK1/2 phosphorylation and choline acetyltransferase. These effects could be reversed by treatment with the anticholinergic aclidinium bromide, by silencing the mRNA of muscarinic receptors M1, M2 or M3, or by the depletion of extracellular acetylcholine by treatment with acetylcholinesterase. A non-neuronal cholinergic system is implicated in cigarette smoke-induced bronchial fibroblast-to-myofibroblast transition, which is inhibited by aclidinium bromide. Topics: Actins; Bronchi; Cells, Cultured; Cholinergic Antagonists; Collagen Type I; Cyclic AMP; Fibroblasts; Fibrosis; Fluoresceins; Gene Expression Regulation; Humans; Inflammation; Lung; Microscopy, Fluorescence; Myofibroblasts; Reactive Oxygen Species; RNA, Small Interfering; Smoke; Smoking; Time Factors; Tropanes | 2013 |
Aclidinium bromide abrogates allergen-induced hyperresponsiveness and reduces eosinophilia in murine model of airway inflammation.
Airway hyperresponsiveness and inflammation characterize the airways of individuals with asthma and chronic obstructive pulmonary disease (COPD). Hence, therapeutic approaches that attenuate such manifestations may offer promise in the management of these diseases. In the present study, we investigated whether a novel long-acting cholinergic antagonist, aclidinium bromide, modulates airway function and leukocyte trafficking in an Aspergillus fumigatus (Af)-induced murine model of asthma. Nebulized aclidinium (1 mg/ml) administration completely abrogated increases in methacholine-induced lung resistance in Af-exposed mice. Parallel assessment of dynamic compliance showed that aclidinium also completely restores methacholine-mediated decreases in naïve and Af-exposed mice. As evidenced by differential cell counts within bronchoalveolar lavage fluid, aclidinium also diminished (51±4%) Af-induced airway eosinophil numbers with no significant change in other immune cell types. Further assessment of cytokine and total protein levels in bronchoalveolar lavage fluid showed that aclidinium had little effect on IL-4 or IL-6 levels in either Af-exposed or naïve mice but markedly decreased total protein levels in bronchoalveolar lavage fluid. These data suggest that aclidinium, a selective muscarinic antagonist, not only acts as a bronchodilator but could also act as an anti-inflammatory agent with potential clinical benefits in the treatment of COPD and asthma. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antigens, Fungal; Asthma; Bronchitis; Bronchoalveolar Lavage Fluid; Cell Count; Cholinergic Antagonists; Cytokines; Female; Inflammation; Leukocytes; Mice; Mice, Inbred BALB C; Pulmonary Disease, Chronic Obstructive; Pulmonary Eosinophilia; Respiratory Hypersensitivity; Respiratory System; Tropanes | 2010 |