acetylcysteine has been researched along with Hyperlipemia in 15 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (13.33) | 18.2507 |
2000's | 5 (33.33) | 29.6817 |
2010's | 6 (40.00) | 24.3611 |
2020's | 2 (13.33) | 2.80 |
Authors | Studies |
---|---|
Cui, Y; Flaker, GC; Hao, H; Jiang, M; Liu, Q; Liu, X; Liu, Z; Xiao, Y; Zhou, S; Zhu, Q | 1 |
Chakfé, N; Charles, AL; Delay, C; Geny, B; Georg, I; Goupilleau, F; Lejay, A; Talha, S; Thaveau, F | 1 |
Bakoyiannis, C; Iliopoulos, D; Kapelouzou, A; Liakakos, T; Mastrogeorgiou, M; Mylonas, KS; Nikiteas, N; Schizas, D; Spartalis, E; Spartalis, M | 1 |
Garan, Y; Gotoh, T; Ikeda, K; Nishimura, N; Node, K; Oike, Y; Okazaki, T; Taguchi, R; Watanabe, K; Yamamoto, T; Yano, M | 1 |
Agrogiannis, G; Dimitroulis, D; Karatzas, T; Kitraki, E; Koros, C; Korou, LM; Pergialiotis, V; Perrea, DN; Tzanetakou, I; Vlachos, IS | 1 |
Bonaterra, G; Dugi, KA; Edler, L; Hildebrandt, W; Kinscherf, R; Sauer, R | 1 |
Cui, L; Cui, Y; Hao, H; He, G; Li, X; Liu, L; Liu, PZ; Liu, Z; Narasimhulu, CA; Parthasarathy, S; Xiao, Y; Xie, X; Zhang, J; Zhang, Q | 1 |
Bao, J; Dimond, CC; Gius, D; Lu, Z; Pang, L; Sack, MN; Scott, I | 1 |
Duquaine, D; Kalyanaraman, B; Rajagopalan, S; Vásquez-Vivar, J; Whitsett, J | 1 |
Bellou, V; Bodens, A; Dröge, W; Dugi, K; Edler, L; Hamann, A; Hildebrandt, W; Kinscherf, R; Krakowski-Roosen, H; Lacher, S; Nawroth, P; Nöbel, N; Sauer, R | 1 |
Hsu, CC; Lin, CC; Lin, MP; Yin, MC | 1 |
Harmon, JS; Robertson, R; Zhang, T; Zhou, H | 1 |
Li, HL; Wang, B; Yang, WY | 1 |
Parenti, DM; Simon, GL; Weinroth, SE | 1 |
Demacker, PN; Kroon, AA; Stalenhoef, AF | 1 |
1 review(s) available for acetylcysteine and Hyperlipemia
Article | Year |
---|---|
Wasting syndrome in AIDS: pathophysiologic mechanisms and therapeutic approaches.
Topics: Acetylcysteine; Acquired Immunodeficiency Syndrome; AIDS-Related Opportunistic Infections; Body Composition; Cachexia; Cytokines; Fatty Acids, Omega-3; Humans; Hyperlipidemias; Thalidomide; Weight Loss | 1995 |
2 trial(s) available for acetylcysteine and Hyperlipemia
Article | Year |
---|---|
Oral N-acetylcysteine reduces plasma homocysteine concentrations regardless of lipid or smoking status.
Topics: Acetylcysteine; Administration, Oral; Adult; Antihypertensive Agents; Antioxidants; Biotransformation; Cholesterol; Cysteine; Double-Blind Method; Glutathione; Homocysteine; Humans; Hyperhomocysteinemia; Hyperlipidemias; Hypertension; Leukocytes, Mononuclear; Male; Middle Aged; Smoking; Triglycerides | 2015 |
Effect of thiol antioxidant on body fat and insulin reactivity.
Topics: Acetylcysteine; Adipose Tissue; Adult; Antioxidants; Body Weight; Cell Line; Creatine; Cysteine; Cystine; Female; Glucose Tolerance Test; Humans; Hyperlipidemias; Insulin; Male; Middle Aged; Obesity; Receptor, Insulin; Sulfhydryl Compounds | 2004 |
12 other study(ies) available for acetylcysteine and Hyperlipemia
Article | Year |
---|---|
N-acetylcysteine attenuates atherosclerosis progression in aging LDL receptor deficient mice with preserved M2 macrophages and increased CD146.
Topics: Acetylcysteine; Aging; Animals; Atherosclerosis; CD146 Antigen; Diet, High-Fat; Hyperlipidemias; Inflammation; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Reactive Oxygen Species; Receptors, LDL | 2022 |
Critical Limb Ischaemia Exacerbates Mitochondrial Dysfunction in ApoE-/- Mice Compared with ApoE+/+ Mice, but N-acetyl Cysteine still Confers Protection.
Topics: Acetylcysteine; Animals; Antioxidants; Calcium; Critical Illness; Disease Models, Animal; Hyperlipidemias; Ischemia; Mice, Knockout, ApoE; Mitochondria, Muscle; Muscle, Skeletal; Oxidative Stress; Peripheral Arterial Disease; Reactive Oxygen Species | 2019 |
KLF4 Upregulation in Atherosclerotic Thoracic Aortas: Exploring the Protective Effect of Colchicine-based Regimens in a Hyperlipidemic Rabbit Model.
Topics: Acetylcysteine; Animals; Anti-Inflammatory Agents; Aorta, Thoracic; Aortic Diseases; Atherosclerosis; Colchicine; Disease Models, Animal; Drug Therapy, Combination; Fibric Acids; Hyperlipidemias; Kruppel-Like Factor 4; Male; Plaque, Atherosclerotic; Rabbits; Up-Regulation | 2022 |
Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice.
Topics: Acetylcysteine; Adipose Tissue, White; Animals; Antioxidants; Fatty Acids; Hyperlipidemias; Lipodystrophy; Lipoprotein Lipase; Mice; Mice, Knockout; Mitochondria; Mitochondrial Turnover; Oxidative Stress; Phenotype; Transferases (Other Substituted Phosphate Groups) | 2013 |
Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice.
Topics: Acetylcysteine; Animals; Antioxidants; Cardiovascular System; Diet, High-Fat; Homeostasis; Hyperlipidemias; Hypothalamo-Hypophyseal System; Lipid Metabolism; Mice; Receptors, Glucocorticoid; Sesame Oil | 2014 |
N-acetylcysteine inhibits in vivo oxidation of native low-density lipoprotein.
Topics: Acetylcysteine; Animals; Antioxidants; Atherosclerosis; Humans; Hyperlipidemias; Lipoproteins, LDL; Male; Mice; Mice, Inbred C57BL; Oxidation-Reduction; Reactive Oxygen Species; Receptors, LDL | 2015 |
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity.
Topics: Acetylcysteine; Animals; Dietary Fats; Disease Susceptibility; Electron Transport; Hep G2 Cells; Humans; Hyperlipidemias; Liver; Membrane Potential, Mitochondrial; Mice; Mice, Knockout; Mitochondria, Liver; Oxidative Stress; Palmitates; Reactive Oxygen Species; RNA, Small Interfering; Sirtuin 3 | 2010 |
Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants.
Topics: Acetylcholine; Acetylcysteine; Animals; Antioxidants; Aorta, Thoracic; Arteriosclerosis; Biopterins; Calcimycin; Cholesterol; Diet; Endothelium, Vascular; Free Radical Scavengers; Hyperlipidemias; Ionophores; Male; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Oxidation-Reduction; Oxygen; Pteridines; Pterins; Rabbits; Sulfhydryl Compounds; Vasodilator Agents | 2002 |
Effect of five cysteine-containing compounds on three lipogenic enzymes in Balb/cA mice consuming a high saturated fat diet.
Topics: Acetylcysteine; Animals; Blood Glucose; Cysteine; Diet; Dietary Fats; Fatty Acid Synthases; Fatty Acids; Glucosephosphate Dehydrogenase; Glutathione Peroxidase; Hyperlipidemias; Insulin; Kidney; Liver; Malate Dehydrogenase; Male; Mice; Mice, Inbred BALB C; Myocardium; Uric Acid | 2004 |
Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes.
Topics: Acetylcysteine; Animals; Antioxidants; Diabetes Mellitus, Type 2; Gene Expression; Glucose; Glutathione Peroxidase; Glyceraldehyde; Homeodomain Proteins; Hyperlipidemias; Insulin; Insulin-Secreting Cells; Interleukin-1beta; Maf Transcription Factors, Large; Models, Biological; Oxidative Stress; Reactive Oxygen Species; Trans-Activators; Transfection | 2007 |
[N-acetyl-l-cysteine improves function of islet beta cell in hyperlipidemic rats and its mechanism].
Topics: Acetylcysteine; Animals; Dietary Fats; Free Radical Scavengers; Hyperlipidemias; Insulin Resistance; Islets of Langerhans; Male; Oxidative Stress; Random Allocation; Rats; Rats, Sprague-Dawley; Signal Transduction | 2007 |
N-acetylcysteine and serum concentrations of lipoprotein(a).
Topics: Acetylcysteine; Adult; Aged; Female; Humans; Hyperlipidemias; Immunoassay; In Vitro Techniques; Lipoprotein(a); Lipoproteins; Male; Middle Aged | 1991 |