Page last updated: 2024-10-15

acetylcarnitine and Diabetes Mellitus, Type 2

acetylcarnitine has been researched along with Diabetes Mellitus, Type 2 in 12 studies

Acetylcarnitine: An acetic acid ester of CARNITINE that facilitates movement of ACETYL COA into the matrices of mammalian MITOCHONDRIA during the oxidation of FATTY ACIDS.

Diabetes Mellitus, Type 2: A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.

Research Excerpts

ExcerptRelevanceReference
"Acetylcarnitine plays an important role in fat metabolism and can be detected in proton magnetic resonance spectra in skeletal muscle."5.56Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T ( Bastian, M; Kautzky-Willer, A; Klepochová, R; Krebs, M; Krššák, M; Leutner, M; Trattnig, S; Weber, M, 2020)
"Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity."3.80Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. ( Brouwers, B; Hesselink, MK; Hoeks, J; Kooi, ME; Koves, T; Lindeboom, L; Muoio, DM; Nabuurs, CI; Phielix, E; Schrauwen, P; Schrauwen-Hinderling, VB; Stevens, RD; Wildberger, JE, 2014)
"Dapagliflozin treatment increased intramyocellular lipid content (0."3.11Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022)
"Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux."3.11Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022)
"Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out."3.11Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022)
"Type 2 diabetes mellitus is an independent risk factor for the development of cardiovascular disease."2.47Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. ( Alvarez de Sotomayor, M; Herrera, MD; Justo, ML; Mingorance, C; Rodríguez-Rodríguez, R, 2011)
"Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min)."1.91Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. ( Grevendonk, L; Hesselink, MK; Hoeks, J; Koves, TR; Lindeboom, L; Mancilla, RF; Muoio, DM; Schrauwen, P; Schrauwen-Hinderling, V, 2023)
"Acetylcarnitine plays an important role in fat metabolism and can be detected in proton magnetic resonance spectra in skeletal muscle."1.56Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T ( Bastian, M; Kautzky-Willer, A; Klepochová, R; Krebs, M; Krššák, M; Leutner, M; Trattnig, S; Weber, M, 2020)
"Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism."1.36Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. ( Adams, SH; Fiehn, O; Garvey, WT; Hoppel, CL; Lok, KH; Newman, JW, 2010)

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (8.33)29.6817
2010's6 (50.00)24.3611
2020's5 (41.67)2.80

Authors

AuthorsStudies
Zhao, S1
Liu, ML1
Huang, B1
Zhao, FR1
Li, Y2
Cui, XT1
Lin, R1
Op den Kamp, YJM1
Gemmink, A1
de Ligt, M1
Dautzenberg, B1
Kornips, E1
Jorgensen, JA1
Schaart, G1
Esterline, R1
Pava, DA1
Hoeks, J5
Schrauwen-Hinderling, VB2
Kersten, S1
Havekes, B1
Koves, TR4
Muoio, DM5
Hesselink, MKC1
Oscarsson, J1
Phielix, E2
Schrauwen, P5
Mancilla, RF3
Lindeboom, L4
Grevendonk, L3
Schrauwen-Hinderling, V3
Hesselink, MK4
Qutob, HMH1
Saad, RA1
Bali, H1
Osailan, A1
Jaber, J1
Alzahrani, E1
Alyami, J1
Elsayed, H1
Alserihi, R1
Shaikhomar, OA1
Divya, KM1
Savitha, DP1
Krishna, GA1
Dhanya, TM1
Mohanan, PV1
Shah, SF1
Jafry, AT1
Hussain, G1
Kazim, AH1
Ali, M1
Rivani, E1
Endraswari, PD1
Widodo, ADW1
Khalil, MR1
Guldberg, R1
Nørgård, BM1
Uldbjerg, N1
Wehberg, S1
Fowobaje, KR1
Mashood, LO1
Ekholuenetale, M1
Ibidoja, OJ1
Romagnoli, A1
D'Agostino, M1
Pavoni, E1
Ardiccioni, C1
Motta, S1
Crippa, P1
Biagetti, G1
Notarstefano, V1
Rexha, J1
Perta, N1
Barocci, S1
Costabile, BK1
Colasurdo, G1
Caucci, S1
Mencarelli, D1
Turchetti, C1
Farina, M1
Pierantoni, L1
La Teana, A1
Al Hadi, R1
Cicconardi, F1
Chinappi, M1
Trucchi, E1
Mancia, F1
Menzo, S1
Morozzo Della Rocca, B1
D'Annessa, I1
Di Marino, D1
Choya, A1
de Rivas, B1
Gutiérrez-Ortiz, JI1
López-Fonseca, R1
Xu, S1
Cheng, B1
Huang, Z1
Liu, T1
Jiang, L1
Guo, W1
Xiong, J1
Amirazodi, M1
Daryanoosh, F1
Mehrabi, A1
Gaeini, A1
Koushkie Jahromi, M1
Salesi, M1
Zarifkar, AH1
Studeny, P1
Netukova, M1
Nemcokova, M1
Klimesova, YM1
Krizova, D1
Kang, H1
Tao, Y1
Zhang, Q1
Sha, D1
Chen, Y1
Yao, J1
Gao, Y1
Liu, J1
Ji, L1
Shi, P1
Shi, C1
Wu, YL1
Wright, AI1
M El-Metwaly, N1
A Katouah, H1
El-Desouky, MG1
El-Bindary, AA1
El-Bindary, MA1
Kostakis, ID1
Raptis, DA1
Davidson, BR1
Iype, S1
Nasralla, D1
Imber, C1
Sharma, D1
Pissanou, T1
Pollok, JM1
Hughes, AM1
Sanderson, E1
Morris, T1
Ayorech, Z1
Tesli, M1
Ask, H1
Reichborn-Kjennerud, T1
Andreassen, OA1
Magnus, P1
Helgeland, Ø1
Johansson, S1
Njølstad, P1
Davey Smith, G1
Havdahl, A1
Howe, LD1
Davies, NM1
Amrillah, T1
Prasetio, A1
Supandi, AR1
Sidiq, DH1
Putra, FS1
Nugroho, MA1
Salsabilla, Z1
Azmi, R1
Grammatikopoulos, P1
Bouloumis, T1
Steinhauer, S1
Mironov, VS2
Bazhenova, TA2
Manakin, YV2
Yagubskii, EB2
Yakushev, IA1
Gilmutdinov, IF1
Simonov, SV1
Lan, K1
Yang, H1
Zheng, J1
Hu, H1
Zhu, T1
Zou, X1
Hu, B1
Liu, H1
Olokede, O1
Wu, H1
Holtzapple, M1
Gungor, O1
Kose, M1
Ghaemi, R1
Acker, M1
Stosic, A1
Jacobs, R1
Selvaganapathy, PR1
Ludwig, N1
Yerneni, SS1
Azambuja, JH1
Pietrowska, M1
Widłak, P1
Hinck, CS1
Głuszko, A1
Szczepański, MJ1
Kärmer, T1
Kallinger, I1
Schulz, D1
Bauer, RJ1
Spanier, G1
Spoerl, S1
Meier, JK1
Ettl, T1
Razzo, BM1
Reichert, TE1
Hinck, AP1
Whiteside, TL1
Wei, ZL1
Juan, W1
Tong, D1
Juan, LX1
Sa, LY1
Jie, HFM1
Xiao, G1
Xiang, LG1
Jie, HM1
Xu, C1
Yu, DN1
Yao, ZX1
Bigdeli, F1
Gao, XM1
Cheng, X1
Li, JZ1
Zhang, JW1
Wang, W2
Guan, ZJ1
Bu, Y1
Liu, KG1
Morsali, A1
Das, R1
Paul, R1
Parui, A1
Shrotri, A1
Atzori, C1
Lomachenko, KA1
Singh, AK1
Mondal, J1
Peter, SC1
Florimbio, AR1
Coughlin, LN1
Bauermeister, JA1
Young, SD1
Zimmerman, MA1
Walton, MA1
Bonar, EE1
Demir, D1
Balci, AB1
Kahraman, N1
Sunbul, SA1
Gucu, A1
Seker, IB1
Badem, S1
Yuksel, A1
Ozyazicioglu, AF1
Goncu, MT1
Zhang, H1
Zhou, H1
Deng, Z1
Luo, L1
Ong, SP1
Wang, C2
Xin, H1
Whittingham, MS1
Zhou, G1
Maemura, R1
Wakamatsu, M1
Matsumoto, K1
Sakaguchi, H1
Yoshida, N1
Hama, A1
Yoshida, T1
Miwata, S1
Kitazawa, H1
Narita, K1
Kataoka, S1
Ichikawa, D1
Hamada, M1
Taniguchi, R1
Suzuki, K1
Kawashima, N1
Nishikawa, E1
Narita, A1
Okuno, Y1
Nishio, N1
Kato, K1
Kojima, S1
Morita, K1
Muramatsu, H1
Takahashi, Y1
Yirgu, A1
Mekonnen, Y1
Eyado, A1
Staropoli, A1
Vinale, F1
Zac, J1
Zac, S1
Pérez-Padilla, R1
Remigio-Luna, A1
Guzmán-Boulloud, N1
Gochicoa-Rangel, L1
Guzmán-Valderrábano, C1
Thirión-Romero, I1
Statsenko, ME1
Turkina, SV1
Barantsevich, ER1
Karakulova, YV1
Baranova, NS1
Morzhukhina, MV1
Wang, Q1
Gu, Y1
Chen, C1
Qiao, L1
Pan, F1
Song, C1
Canetto, SS1
Entilli, L1
Cerbo, I1
Cipolletta, S1
Wu, Y2
Zhu, P1
Jiang, Y1
Zhang, X2
Wang, Z1
Xie, B1
Song, T1
Zhang, F1
Luo, A1
Li, S2
Xiong, X1
Han, J1
Peng, X1
Li, M1
Huang, L1
Chen, Q1
Fang, W1
Hou, Y1
Zhu, Y1
Ye, J1
Liu, L1
Islam, MR1
Sanderson, P1
Johansen, MP1
Payne, TE1
Naidu, R1
Cao, J1
Yang, J1
Niu, X1
Liu, X1
Zhai, Y1
Qiang, C1
Niu, Y1
Li, Z1
Dong, N1
Wen, B1
Ouyang, Z1
Zhang, Y1
Li, J2
Zhao, M1
Zhao, J1
Morici, P1
Rizzato, C1
Ghelardi, E1
Rossolini, GM1
Lupetti, A1
Gözüküçük, R1
Cakiroglu, B1
He, X1
Li, R1
Zhao, D1
Zhang, L1
Ji, X1
Fan, X1
Chen, J1
Wang, Y1
Luo, Y1
Zheng, D1
Xie, L1
Sun, S1
Cai, Z1
Liu, Q1
Ma, K1
Sun, X1
Drinkwater, JJ1
Davis, TME1
Turner, AW1
Davis, WA1
Suzuki, Y1
Mizuta, Y1
Mikagi, A1
Misawa-Suzuki, T1
Tsuchido, Y1
Sugaya, T1
Hashimoto, T1
Ema, K1
Hayashita, T1
Klepochová, R1
Leutner, M1
Bastian, M1
Krebs, M1
Weber, M1
Trattnig, S1
Kautzky-Willer, A1
Krššák, M1
Adamska-Patruno, E1
Godzien, J1
Ciborowski, M1
Samczuk, P1
Bauer, W1
Siewko, K1
Gorska, M1
Barbas, C1
Kretowski, A1
Rolim, LC1
da Silva, EM1
Flumignan, RL1
Abreu, MM1
Dib, SA1
Nabuurs, CI1
Brouwers, B1
Kooi, ME1
Wildberger, JE1
Stevens, RD1
Koves, T1
Chen, X1
Li, Q2
Du, J1
Liu, Z1
Peng, Y1
Xu, M1
Lei, M1
Zheng, S1
Yu, H1
Shi, J1
Tao, S1
Feng, P1
Tian, H1
Fiehn, O1
Garvey, WT1
Newman, JW1
Lok, KH1
Hoppel, CL1
Adams, SH1
Mingorance, C1
Rodríguez-Rodríguez, R1
Justo, ML1
Alvarez de Sotomayor, M1
Herrera, MD1
Giancaterini, A1
De Gaetano, A1
Mingrone, G1
Gniuli, D1
Liverani, E1
Capristo, E1
Greco, AV1

Clinical Trials (5)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
DAPAMAAST: A Double-blind, Randomized, Phase IV, Mechanistic, Placebo-controlled, Cross-over, Single-center Study to Evaluate the Effects of 5 Weeks Dapagliflozin Treatment on Insulin Sensitivity in Skeletal Muscle in Type 2 Diabetes Mellitus Patients.[NCT03338855]Phase 426 participants (Actual)Interventional2018-03-05Completed
Sex-specific Relationship of Epigenetics Based Modifications in the Saliva and Blood With the Occurence of Type 2 Diabetes[NCT04011228]224 participants (Anticipated)Observational2016-02-29Recruiting
Analysis of Genetic Aspects of Metabolic Response on Diet With Different Content of Carbohydrate and Fat. Searching for Genetic Markers for Individualized Therapy in Patients With Obesity and Type 2 Diabetes[NCT03792685]150 participants (Actual)Interventional2009-09-24Completed
Non-invasive Approaches to Identify the Cause of Fatigue in Inflammatory Bowel Disease Patients[NCT03670693]45 participants (Actual)Interventional2018-08-01Completed
Effects of Almond Consumption on Cardiovascular, Metabolomic, and Microbiome Profiles in Millennials: Implications of Systemic Glucoregulatory Mechanisms[NCT03084003]74 participants (Actual)Interventional2016-02-18Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

24-Hour Energy Expenditure After 5 Weeks of Treatment

Whole body energy expenditure was measured over a 24-hour period. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionmegajoules/day (Least Squares Mean)
Dapagliflozin 10 mg9.519
Placebo9.628

24-Hour RER After 5 Weeks of Treatment

RER was measured before and after meals over a 24-hour period. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionratio (Least Squares Mean)
Dapagliflozin 10 mg0.812
Placebo0.835

Body Composition (Total Mass) After 5 Weeks of Treatment

On Day 6, 7 or 8 of the end of treatment visit in both treatment periods a DEXA scan was used to determine body composition. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionkilograms (Least Squares Mean)
Dapagliflozin 10 mg85.248
Placebo86.504

Change in Respiratory Exchange Ratio (RER) From Fasted State to Insulin Stimulated State After 5 Weeks of Treatment

During the indirect calorimetry of the EHC test, respiratory gas exchange was measured using open air circuit respirometry with an automated ventilated hood system. Metabolic flexibility was determined by the change in RER from fasted state to insulin stimulated state at the end of Treatment Periods 1 and 2 and results are presented as delta RER (basal vs high insulin). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionratio (Least Squares Mean)
Dapagliflozin 10 mg0.101
Placebo0.089

Corrected Glucose Disposal Rate (cGDR) Measured as Change in Rate of Disposal (Delta RD) Basal vs High Insulin After 5 Weeks of Treatment

Skeletal muscle insulin sensitivity was measured as cGDR (referred to as delta RD [basal vs high insulin]) using a 2-step 5.5 hour euglycemic hyperinsulinemic clamp (EHC) procedure in combination with infusion of D-glucose (6,6-D2) glucose. Delta RD (basal vs high insulin) was corrected for urinary glucose excretion and measured at the end of Treatment Periods 1 and 2. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionmicromole/kilogram body weight/minute (Least Squares Mean)
Dapagliflozin 10 mg8.523
Placebo9.592

Fibroblast Growth Factor 21 (FGF21) Area Under the Curve (AUC) in Plasma After 5 Weeks of Treatment

From the end of Day 1 until the morning of Day 3 of the end of each treatment visit, the patients stayed in the metabolic chamber (36 hours). During this stay FGF21 was measured in plasma before and after meals and before bed-time to determine the AUC (last 24 hours). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

Interventionnanograms/liter/hour (Least Squares Mean)
Dapagliflozin 10 mg3310.415
Placebo3554.716

Body Composition (Fat Mass and Lean Mass) After 5 Weeks of Treatment

On Day 6, 7 or 8 of the end of treatment visit in both treatment periods, a Dual-energy X-ray absorptiometry (DEXA) scan was used to determine body composition. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

,
Interventiongrams (Least Squares Mean)
Fat MassLean Mass
Dapagliflozin 10 mg25318.359929.0
Placebo25564.960595.4

Change in Endogenous Glucose Production (EGP) After 5 Weeks of Treatment

A 2-step 5.5 hour EHC in combination with infusion of 6,6-D2 glucose was used to determine rates of EGP at the end of Treatment Periods 1 and 2. Results of the change in EGP are presented as delta EGP (basal vs low insulin and basal vs high insulin). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2

,
Interventionmicromole/kilogram body weight/minute (Least Squares Mean)
Delta EGP (basal vs low insulin)Delta EGP (basal vs high insulin)
Dapagliflozin 10 mg-4.656-10.803
Placebo-2.591-8.512

Reviews

3 reviews available for acetylcarnitine and Diabetes Mellitus, Type 2

ArticleYear
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
    Medicina clinica (English ed.), 2022, Dec-23, Volume: 159, Issue:12

    Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter

2022
Acetyl-L-carnitine for the treatment of diabetic peripheral neuropathy.
    The Cochrane database of systematic reviews, 2019, 06-15, Volume: 6

    Topics: Acetylcarnitine; Adult; Aged; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropa

2019
Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders.
    Vascular health and risk management, 2011, Volume: 7

    Topics: Acetylcarnitine; Animals; Cardiovascular Agents; Cardiovascular Diseases; Carnitine; Diabetes Mellit

2011

Trials

4 trials available for acetylcarnitine and Diabetes Mellitus, Type 2

ArticleYear
Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism.
    Molecular metabolism, 2022, Volume: 66

    Topics: Acetylcarnitine; Amino Acids; Cross-Over Studies; Diabetes Mellitus, Type 2; Fatty Acids; Glucose; H

2022
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
    Medicina clinica (English ed.), 2022, Dec-23, Volume: 159, Issue:12

    Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter

2022
Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial.
    Journal of diabetes investigation, 2016, Volume: 7, Issue:5

    Topics: Acetylcarnitine; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Double

2016
Acetyl-L-carnitine infusion increases glucose disposal in type 2 diabetic patients.
    Metabolism: clinical and experimental, 2000, Volume: 49, Issue:6

    Topics: Acetylcarnitine; Calorimetry, Indirect; Diabetes Mellitus, Type 2; Female; Glucose; Glucose Clamp Te

2000

Other Studies

6 other studies available for acetylcarnitine and Diabetes Mellitus, Type 2

ArticleYear
Acetylcarnitine Is Associated With Cardiovascular Disease Risk in Type 2 Diabetes Mellitus.
    Frontiers in endocrinology, 2021, Volume: 12

    Topics: Acetylcarnitine; Aged; Biomarkers; Cardiovascular Diseases; Cross-Sectional Studies; Diabetes Mellit

2021
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
    JCI insight, 2023, 01-10, Volume: 8, Issue:1

    Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus

2023
Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T
    Obesity (Silver Spring, Md.), 2020, Volume: 28, Issue:8

    Topics: Acetylcarnitine; Diabetes Mellitus, Type 2; Female; Humans; Hyperglycemia; Lipid Metabolism; Magneti

2020
The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men.
    Nutrients, 2019, Apr-19, Volume: 11, Issue:4

    Topics: Acetylcarnitine; Adult; Alleles; Bile Acids and Salts; Diabetes Mellitus, Type 2; Diet; Dietary Carb

2019
Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection.
    The Journal of clinical investigation, 2014, Volume: 124, Issue:11

    Topics: Acetylcarnitine; Adult; Aged; Diabetes Mellitus, Type 2; Female; Humans; Insulin Resistance; Male; M

2014
Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.
    PloS one, 2010, Dec-10, Volume: 5, Issue:12

    Topics: Acetylcarnitine; Alleles; Amino Acids; Biomarkers; Black or African American; Diabetes Mellitus, Typ

2010