acetylcarnitine has been researched along with Diabetes Mellitus, Adult-Onset in 12 studies
Acetylcarnitine: An acetic acid ester of CARNITINE that facilitates movement of ACETYL COA into the matrices of mammalian MITOCHONDRIA during the oxidation of FATTY ACIDS.
Excerpt | Relevance | Reference |
---|---|---|
"Acetylcarnitine plays an important role in fat metabolism and can be detected in proton magnetic resonance spectra in skeletal muscle." | 5.56 | Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T ( Bastian, M; Kautzky-Willer, A; Klepochová, R; Krebs, M; Krššák, M; Leutner, M; Trattnig, S; Weber, M, 2020) |
"Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity." | 3.80 | Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. ( Brouwers, B; Hesselink, MK; Hoeks, J; Kooi, ME; Koves, T; Lindeboom, L; Muoio, DM; Nabuurs, CI; Phielix, E; Schrauwen, P; Schrauwen-Hinderling, VB; Stevens, RD; Wildberger, JE, 2014) |
"Dapagliflozin treatment increased intramyocellular lipid content (0." | 3.11 | Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022) |
"Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux." | 3.11 | Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022) |
"Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out." | 3.11 | Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism. ( Dautzenberg, B; de Ligt, M; Esterline, R; Gemmink, A; Havekes, B; Hesselink, MKC; Hoeks, J; Jorgensen, JA; Kersten, S; Kornips, E; Koves, TR; Muoio, DM; Op den Kamp, YJM; Oscarsson, J; Pava, DA; Phielix, E; Schaart, G; Schrauwen, P; Schrauwen-Hinderling, VB, 2022) |
"Type 2 diabetes mellitus is an independent risk factor for the development of cardiovascular disease." | 2.47 | Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. ( Alvarez de Sotomayor, M; Herrera, MD; Justo, ML; Mingorance, C; Rodríguez-Rodríguez, R, 2011) |
"Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min)." | 1.91 | Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. ( Grevendonk, L; Hesselink, MK; Hoeks, J; Koves, TR; Lindeboom, L; Mancilla, RF; Muoio, DM; Schrauwen, P; Schrauwen-Hinderling, V, 2023) |
"Acetylcarnitine plays an important role in fat metabolism and can be detected in proton magnetic resonance spectra in skeletal muscle." | 1.56 | Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T ( Bastian, M; Kautzky-Willer, A; Klepochová, R; Krebs, M; Krššák, M; Leutner, M; Trattnig, S; Weber, M, 2020) |
"Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism." | 1.36 | Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. ( Adams, SH; Fiehn, O; Garvey, WT; Hoppel, CL; Lok, KH; Newman, JW, 2010) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (8.33) | 29.6817 |
2010's | 6 (50.00) | 24.3611 |
2020's | 5 (41.67) | 2.80 |
Authors | Studies |
---|---|
Zhao, S | 1 |
Liu, ML | 1 |
Huang, B | 1 |
Zhao, FR | 1 |
Li, Y | 2 |
Cui, XT | 1 |
Lin, R | 1 |
Op den Kamp, YJM | 1 |
Gemmink, A | 1 |
de Ligt, M | 1 |
Dautzenberg, B | 1 |
Kornips, E | 1 |
Jorgensen, JA | 1 |
Schaart, G | 1 |
Esterline, R | 1 |
Pava, DA | 1 |
Hoeks, J | 5 |
Schrauwen-Hinderling, VB | 2 |
Kersten, S | 1 |
Havekes, B | 1 |
Koves, TR | 4 |
Muoio, DM | 5 |
Hesselink, MKC | 1 |
Oscarsson, J | 1 |
Phielix, E | 2 |
Schrauwen, P | 5 |
Mancilla, RF | 3 |
Lindeboom, L | 4 |
Grevendonk, L | 3 |
Schrauwen-Hinderling, V | 3 |
Hesselink, MK | 4 |
Qutob, HMH | 1 |
Saad, RA | 1 |
Bali, H | 1 |
Osailan, A | 1 |
Jaber, J | 1 |
Alzahrani, E | 1 |
Alyami, J | 1 |
Elsayed, H | 1 |
Alserihi, R | 1 |
Shaikhomar, OA | 1 |
Divya, KM | 1 |
Savitha, DP | 1 |
Krishna, GA | 1 |
Dhanya, TM | 1 |
Mohanan, PV | 1 |
Shah, SF | 1 |
Jafry, AT | 1 |
Hussain, G | 1 |
Kazim, AH | 1 |
Ali, M | 1 |
Rivani, E | 1 |
Endraswari, PD | 1 |
Widodo, ADW | 1 |
Khalil, MR | 1 |
Guldberg, R | 1 |
Nørgård, BM | 1 |
Uldbjerg, N | 1 |
Wehberg, S | 1 |
Fowobaje, KR | 1 |
Mashood, LO | 1 |
Ekholuenetale, M | 1 |
Ibidoja, OJ | 1 |
Romagnoli, A | 1 |
D'Agostino, M | 1 |
Pavoni, E | 1 |
Ardiccioni, C | 1 |
Motta, S | 1 |
Crippa, P | 1 |
Biagetti, G | 1 |
Notarstefano, V | 1 |
Rexha, J | 1 |
Perta, N | 1 |
Barocci, S | 1 |
Costabile, BK | 1 |
Colasurdo, G | 1 |
Caucci, S | 1 |
Mencarelli, D | 1 |
Turchetti, C | 1 |
Farina, M | 1 |
Pierantoni, L | 1 |
La Teana, A | 1 |
Al Hadi, R | 1 |
Cicconardi, F | 1 |
Chinappi, M | 1 |
Trucchi, E | 1 |
Mancia, F | 1 |
Menzo, S | 1 |
Morozzo Della Rocca, B | 1 |
D'Annessa, I | 1 |
Di Marino, D | 1 |
Choya, A | 1 |
de Rivas, B | 1 |
Gutiérrez-Ortiz, JI | 1 |
López-Fonseca, R | 1 |
Xu, S | 1 |
Cheng, B | 1 |
Huang, Z | 1 |
Liu, T | 1 |
Jiang, L | 1 |
Guo, W | 1 |
Xiong, J | 1 |
Amirazodi, M | 1 |
Daryanoosh, F | 1 |
Mehrabi, A | 1 |
Gaeini, A | 1 |
Koushkie Jahromi, M | 1 |
Salesi, M | 1 |
Zarifkar, AH | 1 |
Studeny, P | 1 |
Netukova, M | 1 |
Nemcokova, M | 1 |
Klimesova, YM | 1 |
Krizova, D | 1 |
Kang, H | 1 |
Tao, Y | 1 |
Zhang, Q | 1 |
Sha, D | 1 |
Chen, Y | 1 |
Yao, J | 1 |
Gao, Y | 1 |
Liu, J | 1 |
Ji, L | 1 |
Shi, P | 1 |
Shi, C | 1 |
Wu, YL | 1 |
Wright, AI | 1 |
M El-Metwaly, N | 1 |
A Katouah, H | 1 |
El-Desouky, MG | 1 |
El-Bindary, AA | 1 |
El-Bindary, MA | 1 |
Kostakis, ID | 1 |
Raptis, DA | 1 |
Davidson, BR | 1 |
Iype, S | 1 |
Nasralla, D | 1 |
Imber, C | 1 |
Sharma, D | 1 |
Pissanou, T | 1 |
Pollok, JM | 1 |
Hughes, AM | 1 |
Sanderson, E | 1 |
Morris, T | 1 |
Ayorech, Z | 1 |
Tesli, M | 1 |
Ask, H | 1 |
Reichborn-Kjennerud, T | 1 |
Andreassen, OA | 1 |
Magnus, P | 1 |
Helgeland, Ø | 1 |
Johansson, S | 1 |
Njølstad, P | 1 |
Davey Smith, G | 1 |
Havdahl, A | 1 |
Howe, LD | 1 |
Davies, NM | 1 |
Amrillah, T | 1 |
Prasetio, A | 1 |
Supandi, AR | 1 |
Sidiq, DH | 1 |
Putra, FS | 1 |
Nugroho, MA | 1 |
Salsabilla, Z | 1 |
Azmi, R | 1 |
Grammatikopoulos, P | 1 |
Bouloumis, T | 1 |
Steinhauer, S | 1 |
Mironov, VS | 2 |
Bazhenova, TA | 2 |
Manakin, YV | 2 |
Yagubskii, EB | 2 |
Yakushev, IA | 1 |
Gilmutdinov, IF | 1 |
Simonov, SV | 1 |
Lan, K | 1 |
Yang, H | 1 |
Zheng, J | 1 |
Hu, H | 1 |
Zhu, T | 1 |
Zou, X | 1 |
Hu, B | 1 |
Liu, H | 1 |
Olokede, O | 1 |
Wu, H | 1 |
Holtzapple, M | 1 |
Gungor, O | 1 |
Kose, M | 1 |
Ghaemi, R | 1 |
Acker, M | 1 |
Stosic, A | 1 |
Jacobs, R | 1 |
Selvaganapathy, PR | 1 |
Ludwig, N | 1 |
Yerneni, SS | 1 |
Azambuja, JH | 1 |
Pietrowska, M | 1 |
Widłak, P | 1 |
Hinck, CS | 1 |
Głuszko, A | 1 |
Szczepański, MJ | 1 |
Kärmer, T | 1 |
Kallinger, I | 1 |
Schulz, D | 1 |
Bauer, RJ | 1 |
Spanier, G | 1 |
Spoerl, S | 1 |
Meier, JK | 1 |
Ettl, T | 1 |
Razzo, BM | 1 |
Reichert, TE | 1 |
Hinck, AP | 1 |
Whiteside, TL | 1 |
Wei, ZL | 1 |
Juan, W | 1 |
Tong, D | 1 |
Juan, LX | 1 |
Sa, LY | 1 |
Jie, HFM | 1 |
Xiao, G | 1 |
Xiang, LG | 1 |
Jie, HM | 1 |
Xu, C | 1 |
Yu, DN | 1 |
Yao, ZX | 1 |
Bigdeli, F | 1 |
Gao, XM | 1 |
Cheng, X | 1 |
Li, JZ | 1 |
Zhang, JW | 1 |
Wang, W | 2 |
Guan, ZJ | 1 |
Bu, Y | 1 |
Liu, KG | 1 |
Morsali, A | 1 |
Das, R | 1 |
Paul, R | 1 |
Parui, A | 1 |
Shrotri, A | 1 |
Atzori, C | 1 |
Lomachenko, KA | 1 |
Singh, AK | 1 |
Mondal, J | 1 |
Peter, SC | 1 |
Florimbio, AR | 1 |
Coughlin, LN | 1 |
Bauermeister, JA | 1 |
Young, SD | 1 |
Zimmerman, MA | 1 |
Walton, MA | 1 |
Bonar, EE | 1 |
Demir, D | 1 |
Balci, AB | 1 |
Kahraman, N | 1 |
Sunbul, SA | 1 |
Gucu, A | 1 |
Seker, IB | 1 |
Badem, S | 1 |
Yuksel, A | 1 |
Ozyazicioglu, AF | 1 |
Goncu, MT | 1 |
Zhang, H | 1 |
Zhou, H | 1 |
Deng, Z | 1 |
Luo, L | 1 |
Ong, SP | 1 |
Wang, C | 2 |
Xin, H | 1 |
Whittingham, MS | 1 |
Zhou, G | 1 |
Maemura, R | 1 |
Wakamatsu, M | 1 |
Matsumoto, K | 1 |
Sakaguchi, H | 1 |
Yoshida, N | 1 |
Hama, A | 1 |
Yoshida, T | 1 |
Miwata, S | 1 |
Kitazawa, H | 1 |
Narita, K | 1 |
Kataoka, S | 1 |
Ichikawa, D | 1 |
Hamada, M | 1 |
Taniguchi, R | 1 |
Suzuki, K | 1 |
Kawashima, N | 1 |
Nishikawa, E | 1 |
Narita, A | 1 |
Okuno, Y | 1 |
Nishio, N | 1 |
Kato, K | 1 |
Kojima, S | 1 |
Morita, K | 1 |
Muramatsu, H | 1 |
Takahashi, Y | 1 |
Yirgu, A | 1 |
Mekonnen, Y | 1 |
Eyado, A | 1 |
Staropoli, A | 1 |
Vinale, F | 1 |
Zac, J | 1 |
Zac, S | 1 |
Pérez-Padilla, R | 1 |
Remigio-Luna, A | 1 |
Guzmán-Boulloud, N | 1 |
Gochicoa-Rangel, L | 1 |
Guzmán-Valderrábano, C | 1 |
Thirión-Romero, I | 1 |
Statsenko, ME | 1 |
Turkina, SV | 1 |
Barantsevich, ER | 1 |
Karakulova, YV | 1 |
Baranova, NS | 1 |
Morzhukhina, MV | 1 |
Wang, Q | 1 |
Gu, Y | 1 |
Chen, C | 1 |
Qiao, L | 1 |
Pan, F | 1 |
Song, C | 1 |
Canetto, SS | 1 |
Entilli, L | 1 |
Cerbo, I | 1 |
Cipolletta, S | 1 |
Wu, Y | 2 |
Zhu, P | 1 |
Jiang, Y | 1 |
Zhang, X | 2 |
Wang, Z | 1 |
Xie, B | 1 |
Song, T | 1 |
Zhang, F | 1 |
Luo, A | 1 |
Li, S | 2 |
Xiong, X | 1 |
Han, J | 1 |
Peng, X | 1 |
Li, M | 1 |
Huang, L | 1 |
Chen, Q | 1 |
Fang, W | 1 |
Hou, Y | 1 |
Zhu, Y | 1 |
Ye, J | 1 |
Liu, L | 1 |
Islam, MR | 1 |
Sanderson, P | 1 |
Johansen, MP | 1 |
Payne, TE | 1 |
Naidu, R | 1 |
Cao, J | 1 |
Yang, J | 1 |
Niu, X | 1 |
Liu, X | 1 |
Zhai, Y | 1 |
Qiang, C | 1 |
Niu, Y | 1 |
Li, Z | 1 |
Dong, N | 1 |
Wen, B | 1 |
Ouyang, Z | 1 |
Zhang, Y | 1 |
Li, J | 2 |
Zhao, M | 1 |
Zhao, J | 1 |
Morici, P | 1 |
Rizzato, C | 1 |
Ghelardi, E | 1 |
Rossolini, GM | 1 |
Lupetti, A | 1 |
Gözüküçük, R | 1 |
Cakiroglu, B | 1 |
He, X | 1 |
Li, R | 1 |
Zhao, D | 1 |
Zhang, L | 1 |
Ji, X | 1 |
Fan, X | 1 |
Chen, J | 1 |
Wang, Y | 1 |
Luo, Y | 1 |
Zheng, D | 1 |
Xie, L | 1 |
Sun, S | 1 |
Cai, Z | 1 |
Liu, Q | 1 |
Ma, K | 1 |
Sun, X | 1 |
Drinkwater, JJ | 1 |
Davis, TME | 1 |
Turner, AW | 1 |
Davis, WA | 1 |
Suzuki, Y | 1 |
Mizuta, Y | 1 |
Mikagi, A | 1 |
Misawa-Suzuki, T | 1 |
Tsuchido, Y | 1 |
Sugaya, T | 1 |
Hashimoto, T | 1 |
Ema, K | 1 |
Hayashita, T | 1 |
Klepochová, R | 1 |
Leutner, M | 1 |
Bastian, M | 1 |
Krebs, M | 1 |
Weber, M | 1 |
Trattnig, S | 1 |
Kautzky-Willer, A | 1 |
Krššák, M | 1 |
Adamska-Patruno, E | 1 |
Godzien, J | 1 |
Ciborowski, M | 1 |
Samczuk, P | 1 |
Bauer, W | 1 |
Siewko, K | 1 |
Gorska, M | 1 |
Barbas, C | 1 |
Kretowski, A | 1 |
Rolim, LC | 1 |
da Silva, EM | 1 |
Flumignan, RL | 1 |
Abreu, MM | 1 |
Dib, SA | 1 |
Nabuurs, CI | 1 |
Brouwers, B | 1 |
Kooi, ME | 1 |
Wildberger, JE | 1 |
Stevens, RD | 1 |
Koves, T | 1 |
Chen, X | 1 |
Li, Q | 2 |
Du, J | 1 |
Liu, Z | 1 |
Peng, Y | 1 |
Xu, M | 1 |
Lei, M | 1 |
Zheng, S | 1 |
Yu, H | 1 |
Shi, J | 1 |
Tao, S | 1 |
Feng, P | 1 |
Tian, H | 1 |
Fiehn, O | 1 |
Garvey, WT | 1 |
Newman, JW | 1 |
Lok, KH | 1 |
Hoppel, CL | 1 |
Adams, SH | 1 |
Mingorance, C | 1 |
Rodríguez-Rodríguez, R | 1 |
Justo, ML | 1 |
Alvarez de Sotomayor, M | 1 |
Herrera, MD | 1 |
Giancaterini, A | 1 |
De Gaetano, A | 1 |
Mingrone, G | 1 |
Gniuli, D | 1 |
Liverani, E | 1 |
Capristo, E | 1 |
Greco, AV | 1 |
Trial | Phase | Enrollment | Study Type | Start Date | Status | ||
---|---|---|---|---|---|---|---|
DAPAMAAST: A Double-blind, Randomized, Phase IV, Mechanistic, Placebo-controlled, Cross-over, Single-center Study to Evaluate the Effects of 5 Weeks Dapagliflozin Treatment on Insulin Sensitivity in Skeletal Muscle in Type 2 Diabetes Mellitus Patients.[NCT03338855] | Phase 4 | 26 participants (Actual) | Interventional | 2018-03-05 | Completed | ||
Sex-specific Relationship of Epigenetics Based Modifications in the Saliva and Blood With the Occurence of Type 2 Diabetes[NCT04011228] | 224 participants (Anticipated) | Observational | 2016-02-29 | Recruiting | |||
Analysis of Genetic Aspects of Metabolic Response on Diet With Different Content of Carbohydrate and Fat. Searching for Genetic Markers for Individualized Therapy in Patients With Obesity and Type 2 Diabetes[NCT03792685] | 150 participants (Actual) | Interventional | 2009-09-24 | Completed | |||
Non-invasive Approaches to Identify the Cause of Fatigue in Inflammatory Bowel Disease Patients[NCT03670693] | 45 participants (Actual) | Interventional | 2018-08-01 | Completed | |||
Effects of Almond Consumption on Cardiovascular, Metabolomic, and Microbiome Profiles in Millennials: Implications of Systemic Glucoregulatory Mechanisms[NCT03084003] | 74 participants (Actual) | Interventional | 2016-02-18 | Completed | |||
[information is prepared from clinicaltrials.gov, extracted Sep-2024] |
Whole body energy expenditure was measured over a 24-hour period. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | megajoules/day (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 9.519 |
Placebo | 9.628 |
RER was measured before and after meals over a 24-hour period. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | ratio (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 0.812 |
Placebo | 0.835 |
On Day 6, 7 or 8 of the end of treatment visit in both treatment periods a DEXA scan was used to determine body composition. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | kilograms (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 85.248 |
Placebo | 86.504 |
During the indirect calorimetry of the EHC test, respiratory gas exchange was measured using open air circuit respirometry with an automated ventilated hood system. Metabolic flexibility was determined by the change in RER from fasted state to insulin stimulated state at the end of Treatment Periods 1 and 2 and results are presented as delta RER (basal vs high insulin). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | ratio (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 0.101 |
Placebo | 0.089 |
Skeletal muscle insulin sensitivity was measured as cGDR (referred to as delta RD [basal vs high insulin]) using a 2-step 5.5 hour euglycemic hyperinsulinemic clamp (EHC) procedure in combination with infusion of D-glucose (6,6-D2) glucose. Delta RD (basal vs high insulin) was corrected for urinary glucose excretion and measured at the end of Treatment Periods 1 and 2. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | micromole/kilogram body weight/minute (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 8.523 |
Placebo | 9.592 |
From the end of Day 1 until the morning of Day 3 of the end of each treatment visit, the patients stayed in the metabolic chamber (36 hours). During this stay FGF21 was measured in plasma before and after meals and before bed-time to determine the AUC (last 24 hours). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | nanograms/liter/hour (Least Squares Mean) |
---|---|
Dapagliflozin 10 mg | 3310.415 |
Placebo | 3554.716 |
On Day 6, 7 or 8 of the end of treatment visit in both treatment periods, a Dual-energy X-ray absorptiometry (DEXA) scan was used to determine body composition. (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | grams (Least Squares Mean) | |
---|---|---|
Fat Mass | Lean Mass | |
Dapagliflozin 10 mg | 25318.3 | 59929.0 |
Placebo | 25564.9 | 60595.4 |
A 2-step 5.5 hour EHC in combination with infusion of 6,6-D2 glucose was used to determine rates of EGP at the end of Treatment Periods 1 and 2. Results of the change in EGP are presented as delta EGP (basal vs low insulin and basal vs high insulin). (NCT03338855)
Timeframe: At end (Week 5) of Treatment Periods 1 and 2
Intervention | micromole/kilogram body weight/minute (Least Squares Mean) | |
---|---|---|
Delta EGP (basal vs low insulin) | Delta EGP (basal vs high insulin) | |
Dapagliflozin 10 mg | -4.656 | -10.803 |
Placebo | -2.591 | -8.512 |
3 reviews available for acetylcarnitine and Diabetes Mellitus, Adult-Onset
Article | Year |
---|---|
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter | 2022 |
Acetyl-L-carnitine for the treatment of diabetic peripheral neuropathy.
Topics: Acetylcarnitine; Adult; Aged; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropa | 2019 |
Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders.
Topics: Acetylcarnitine; Animals; Cardiovascular Agents; Cardiovascular Diseases; Carnitine; Diabetes Mellit | 2011 |
4 trials available for acetylcarnitine and Diabetes Mellitus, Adult-Onset
Article | Year |
---|---|
Effects of SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes on skeletal muscle cellular metabolism.
Topics: Acetylcarnitine; Amino Acids; Cross-Over Studies; Diabetes Mellitus, Type 2; Fatty Acids; Glucose; H | 2022 |
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter | 2022 |
Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial.
Topics: Acetylcarnitine; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Double | 2016 |
Acetyl-L-carnitine infusion increases glucose disposal in type 2 diabetic patients.
Topics: Acetylcarnitine; Calorimetry, Indirect; Diabetes Mellitus, Type 2; Female; Glucose; Glucose Clamp Te | 2000 |
6 other studies available for acetylcarnitine and Diabetes Mellitus, Adult-Onset
Article | Year |
---|---|
Acetylcarnitine Is Associated With Cardiovascular Disease Risk in Type 2 Diabetes Mellitus.
Topics: Acetylcarnitine; Aged; Biomarkers; Cardiovascular Diseases; Cross-Sectional Studies; Diabetes Mellit | 2021 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans.
Topics: Acetylcarnitine; Carnitine O-Acetyltransferase; Diabetes Mellitus, Type 2; Humans; Mitochondria; Mus | 2023 |
Muscle-Specific Relation of Acetylcarnitine and Intramyocellular Lipids to Chronic Hyperglycemia: A Pilot 3-T
Topics: Acetylcarnitine; Diabetes Mellitus, Type 2; Female; Humans; Hyperglycemia; Lipid Metabolism; Magneti | 2020 |
The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men.
Topics: Acetylcarnitine; Adult; Alleles; Bile Acids and Salts; Diabetes Mellitus, Type 2; Diet; Dietary Carb | 2019 |
Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection.
Topics: Acetylcarnitine; Adult; Aged; Diabetes Mellitus, Type 2; Female; Humans; Insulin Resistance; Male; M | 2014 |
Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.
Topics: Acetylcarnitine; Alleles; Amino Acids; Biomarkers; Black or African American; Diabetes Mellitus, Typ | 2010 |