acetyl-acetonate has been researched along with Femoral-Fractures* in 2 studies
2 other study(ies) available for acetyl-acetonate and Femoral-Fractures
Article | Year |
---|---|
Local vanadium release from a calcium sulfate carrier accelerates fracture healing.
This study evaluated the efficacy of using calcium sulfate (CaSO4 ) as a carrier for intramedullary delivery of an organic vanadium salt, vanadyl acetylacetonate (VAC) after femoral fracture. VAC can act as an insulin-mimetic and can be used to accelerate fracture healing in rats. A heterogenous mixture of VAC and CaSO4 was delivered to the fracture site of BB Wistar rats, and mechanical testing, histomorphometry, micro-computed tomography (micro-CT) were performed to measure healing. At 4 weeks after fracture, maximum torque to failure, effective shear modulus, and effective shear stress were all significantly higher (p < 0.05) in rats treated with 0.25 mg/kg VAC-CaSO4 as compared to carrier control rats. Histomorphometry found a 71% increase in percent cartilage matrix (p < 0.05) and a 64% decrease in percent mineralized tissue (p < 0.05) at 2 weeks after fracture in rats treated with 0.25 mg/kg of VAC-CaSO4 . Micro-CT analyses at 4 weeks found a more organized callus structure and higher trending maximum connected z-ray. fraction for VAC-CaSO4 groups. Evaluation of radiographs and serial histological sections at 12 weeks did not show any evidence of ectopic bone formation. As compared to previous studies, CaSO4 was an effective carrier for reducing the dose of VAC required to accelerate femoral fracture healing in rats. Topics: Animals; Biomechanical Phenomena; Bony Callus; Calcium Sulfate; Drug Carriers; Female; Femoral Fractures; Fracture Healing; Hydroxybutyrates; Male; Pentanones; Rats; Rats, Inbred BB; Vanadium; X-Ray Microtomography | 2014 |
The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing.
This study quantified the effects of local intramedullary delivery of an organic vanadium salt, which may act as an insulin-mimetic on fracture healing. Using a BB Wistar rat femoral fracture model, local vanadyl acetylacetonate (VAC) was delivered to the fracture site and histomorphometry, mechanical testing, and immunohistochemistry were performed. Callus percent cartilage was 200% higher at day 7 (p < 0.05) and 88% higher at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Callus percent mineralized tissue was 37% higher at day 14 (p < 0.05) and 31% higher at day 21 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Maximum torque to failure was 104% and 154% higher at 4 weeks post-fracture (p < 0.05) for the healing femurs from the VAC-treated (1.5 and 3.0 mg/kg) animals. Animals treated with other VAC doses demonstrated increased mechanical parameters at 4 weeks (p < 0.05). Immunohistochemistry detected 62% more proliferating cells at days 7 (p < 0.05) and 94% more at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg VAC. Results showed 100% more vascular endothelial growth factor-C (VEGF-C) positive cells and 80% more blood vessels at day 7 (p < 0.05) within the callus subperiosteal region of VAC-treated animals (1.5 mg/kg) compared to controls. The results suggest that local VAC treatment affects chondrogenesis and angiogenesis within the first 7-10 days post-fracture, which leads to enhanced mineralized tissue formation and accelerated fracture repair as early as 3-4 weeks post-fracture. Topics: Animals; Bone and Bones; Cell Proliferation; Chondrogenesis; Femoral Fractures; Fracture Healing; Hydroxybutyrates; Immunohistochemistry; Insulin; Male; Neovascularization, Physiologic; Pentanones; Rats; Rats, Wistar; Regeneration; Stress, Mechanical; Torque; Vanadium | 2012 |