acetyl-11-ketoboswellic-acid has been researched along with Colorectal-Neoplasms* in 3 studies
3 other study(ies) available for acetyl-11-ketoboswellic-acid and Colorectal-Neoplasms
Article | Year |
---|---|
Chemoprevention of inflammation-related colorectal cancer by silymarin-, acetyl-11-keto-beta-boswellic acid-, curcumin- and maltodextrin-enriched dietetic formulation in animal model.
On the basis of preliminary in vitro experience, we assessed whether an enriched nutritional formulation with estrogen receptor (ER)-beta agonist and anti-inflammatory properties may prevent inflammation-associated colorectal cancer (CRC) in an animal model. Study sample enclosed 110 C57BL/6J male mice. Forty underwent dietary supplement safety assessment (20 standard diet and 20 enriched formulation). Seventy were treated with azoxymethane (AOM)/dextran sulfate sodium and divided into two groups: 35 received standard diet and 35 enriched formulation (curcumin, boswellic acids, silymarin and maltodextrins). Miniature colonoscopy demonstrated colitis and solid lesion development in five mice/group 100 days after first AOM injection. Mice were killed after 10 days. In each group, four subgroups received intraperitoneal bromodeoxyuridine (BrdU) injection at 24th/48th/72nd/96th hour before killing. Anti-inflammatory effect and chemoprevention were evaluated by lesion number/size, histological inflammation/dysplasia/neoplasia assessment, pro-inflammatory cytokine messenger RNA (mRNA), ER-beta/ER-alpha/BrdU immunohistochemistry and TUNEL immunofluorescence. Standard formulation assumption was associated with colon shortening compared with enriched one (P = 0.04), which reduced solid lesion number and size (P < 0.001 for both), histological inflammation score (P = 0.04), pro-inflammatory cytokine mRNA expression (P < 0.001), number of low-grade dysplasia (LGD; P = 0.03) and high-grade dysplasia (P < 0.001) areas. CRC was observed in 69.6% in standard and 23.5% in enriched formulation assuming animals (P < 0.001). Enriched formulation induced lower ER-alpha expression in CRC (P < 0.001) and higher ER-beta expression in LGD (P < 0.001) being associated to higher epithelial turnover (BrdU; P<0.001) in normal mucosa and increased apoptosis in LGD and CRC (P < 0.001 for both). Our results are promising for a successful anti-inflammatory and chemopreventive effect of enriched formulation in CRC arising from inflamed tissue. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Azoxymethane; Chemoprevention; Colitis; Colon; Colonoscopy; Colorectal Neoplasms; Curcumin; Cytokines; Dextran Sulfate; Disease Models, Animal; Food, Fortified; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Polysaccharides; Real-Time Polymerase Chain Reaction; Receptors, Estrogen; Silymarin; Triterpenes | 2018 |
Reversal of the multidrug resistance of human ileocecal adenocarcinoma cells by acetyl-11-keto-β-boswellic acid via downregulation of P-glycoprotein signals.
Multidrug resistance (MDR) represents a clinical obstacle to cancer chemotherapy since it causes cancer recurrence and metastasis. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient derived from the plant Boswellia serrata, has been found to inhibit the growth of a wide variety of tumor cells, including glioma, colorectal cancer, leukemia, human melanoma, hepatocellular carcinoma, and prostate cancer cells. However, the actions of AKBA in multidrug-resistant cancer cells have not been fully elucidated. The current study examined the reversal of MDR by AKBA in a human ileocecal adenocarcinoma cell line with vincristine-induced resistance, HCT-8/VCR. A 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay indicated that cytotoxicity increased drastically and the IC50 of VCR in HCT-8/VCR cells decreased in the presence of AKBA. AKBA had a maximum "fold reversal" of MDR (FR) of 9.19-fold. In addition, HCT-8/VCR cells treated with AKBA and VCR exhibited a higher percentage of apoptotic tumor cells according to flow cytometry. The reversal of MDR by AKBA was evident in an intracellular increase in Rhodamine (Rh123), indicating that the activity of P-glycoprotein (P-gp) was blocked. Furthermore, AKBA inhibited the expression of P-gp and decreased levels of expression of multidrug resistance gene 1 in HCT-8/VCR cells. The current results indicated that AKBA might be a potential agent to reverse MDR in human ileocecal adenocarcinoma. Topics: Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Colorectal Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Humans; Triterpenes | 2016 |
Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers.
Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally, it has been used in Ayurvedic medicine to treat proinflammatory conditions. In this report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs and spleen in orthotopically implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density cluster of differentiation (CD31) were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed nuclear factor-κB (NF-κB) activation in the tumor tissue and expression of proinflammatory (cyclooxygenase-2), tumor survival (bcl-2, bcl-xL, inhibitor of apoptosis (IAP-1) and survivin), proliferative (cyclin D1), invasive (intercellular adhesion molecule 1 and matrix metalloproteinase-9) and angiogenic C-X-C (CXC) receptor 4 and vascular endothelial growth factor) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analog can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers. Topics: Animals; Biomarkers, Tumor; Boswellia; Cell Proliferation; Colorectal Neoplasms; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; HCT116 Cells; Humans; Inflammation; Male; Mice; Mice, Nude; Neoplasm Invasiveness; Neoplasm Metastasis; Neovascularization, Pathologic; Triterpenes; Xenograft Model Antitumor Assays | 2012 |