acacetin has been researched along with Parkinson-Disease* in 2 studies
2 other study(ies) available for acacetin and Parkinson-Disease
Article | Year |
---|---|
Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson's disease model.
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a flavonoid compound isolated from Flos Chrysanthemi Indici, chrysanthemum, safflower, and Calamintha and Linaria species has been shown to have anti-cancer activity, indicating its potential clinical value in cancer treatment. In this study, we sought to study the potentials of acacetin in preventing human dopaminergic neuronal death via inhibition of 6-hydroxydopamine (6-OHDA)-induced neuronal cell death in the SH-SY5Y cells. Our results suggest that acacetin was effective in preventing 6-OHDA-induced neuronal cell death through regulation of mitochondrial-mediated cascade apoptotic cell death. Pretreatment with acacetin significantly inhibited neurotoxicity and neuronal cell death through reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) dysfunction. Acacetin also markedly acted on key molecules in apoptotic cell death pathways and reduced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β). These results suggested that acacetin could inhibit 6-OHDA-induced neuronal cell death originating from ROS-mediated cascade apoptosis pathway. Thus, the results of our study suggest that acacetin is a potent therapeutic agent for PD progression. Topics: Cell Death; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Flavones; Humans; Membrane Potential, Mitochondrial; Molecular Structure; Neurons; Oxidopamine; Parkinson Disease; Reactive Oxygen Species; Structure-Activity Relationship | 2017 |
Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo.
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a constituent of flavone naturally present in plants, has anti-cancer and anti-inflammatory activities. Neuroinflammation is thought to be one of the major pathological mechanisms responsible for Parkinson's disease (PD), and has been a primary target in the development of treatment for PD. In the present study, we evaluated the neuroprotective effect of acacetin in PD induced by 1-methyl-4-phenylpyridine (MPP+)/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined the related pathways in vitro and in vivo. In primary mesencephalic culture, acacetin protected dopaminergic (DA) cells and inhibited production of inflammatory factors such as nitric oxide, prostaglandin E2, and tumor necrosis factor-α against MPP+-induced toxicity in a dose-dependent manner. Then, we confirmed the effect of acacetin (10 mg/kg/d for 3 d, per os (p.o.)) in a mouse model of PD induced by MPTP (30 mg/kg/d for 5 d, intraperitoneally (i.p.)). In the behavioral test (pole test), the acacetin-treated mice showed decreased time of turning and locomotor activity, which were longer in MPTP-only treated mice. In addition, the acacetin-treated group inhibited degeneration of DA neurons and depletion of dopamine level induced by MPTP toxicity in the substantia nigra and striatum of the brain. Moreover, the acacetin-treated group inhibited microglia activation, accompanied by production of inducible nitric oxide synthases and cyclooxygenase-2. These results suggest that acacetin can protect DA neurons against the neurotoxicity involved in PD via its anti-inflammatory action. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Anti-Inflammatory Agents; Dopaminergic Neurons; Flavones; Inflammation; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Parkinson Disease; Parkinsonian Disorders; Phytotherapy; Plant Extracts | 2012 |