acacetin has been researched along with Obesity* in 3 studies
3 other study(ies) available for acacetin and Obesity
Article | Year |
---|---|
Acacetin alleviates energy metabolism disorder through promoting white fat browning mediated by AC-cAMP pathway.
Acacetin (ACA), a flavone isolated from Chinese traditional medical herbs, has numerous pharmacological activities. However, little is known about the roles in white fat browning and energy metabolism. In the present study, we investigated whether and how ACA would improve energy metabolism in vivo and in vitro. ACA (20 mg/kg) was intraperitoneally injected to the mice with obesity induced by HFD for 14 consecutive days (in vivo); differentiated 3T3-L1 adipocytes were treated with ACA (20 µmol/L and 40 µmol/L) for 24 h (in vitro). The metabolic profile, lipid accumulation, fat-browning and mitochondrial contents, and so on were respectively detected. The results in vivo showed that ACA significantly reduced the body weight and visceral adipose tissue weight, alleviated the energy metabolism disorder, and enhanced the browning-related protein expressions in adipose tissue of rats. Besides, the data in vitro revealed that ACA significantly reduced the lipid accumulation, induced the expressions of the browning-related proteins and cAMP-dependent protein kinase A (PKA), and increased the mitochondrium contents, especially enhanced the energy metabolism of adipocytes; however, treatment with beta-adrenergic receptor blocker (propranolol, Pro) or adenyl cyclase (AC) inhibitor (SQ22536, SQ) abrogated the ACA-mediated effects. The data demonstrate that ACA alleviates the energy metabolism disorder through the pro-browning effects mediated by the AC-cAMP pathway. The findings would provide the experimental foundation for ACA to prevent and treat obesity and related metabolism disorders. Topics: 3T3-L1 Cells; Adipocytes, White; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Diet, High-Fat; Energy Metabolism; Flavones; Lipids; Metabolic Diseases; Mice; Obesity; Rats | 2023 |
Acacetin Protects against Non-Alcoholic Fatty Liver Disease by Regulating Lipid Accumulation and Inflammation in Mice.
We previously demonstrated that acacetin reduces adipogenesis in adipocytes, and decreases lipid accumulation in visceral adipocyte tissue. Here we investigated whether acacetin regulated the mechanisms of lipogenesis and inflammation in non-alcoholic fatty liver disease (NAFLD) in obese mice. Male C57BL/6 mice were fed a high-fat diet (HFD), and then administered acacetin by intraperitoneal injection. Acacetin reduced body weight and liver weight in obese mice. Acacetin-treated obese mice exhibited decreased lipid accumulation, increased glycogen accumulation, and improved hepatocyte steatosis. Acacetin regulated triglycerides and total cholesterol in the liver and serum. Acacetin decreased low-density lipoprotein and leptin concentrations, but increased high-density lipoprotein and adiponectin levels in obese mice. Acacetin effectively weakened the gene expressions of transcription factors related to lipogenesis, and promoted the expressions of genes related to lipolysis and fatty acid β-oxidation in liver. Acacetin also reduced expressions of inflammation-related cytokines in the serum and liver. Oleic acid induced lipid accumulation in murine FL83B hepatocytes, and the effects of acacetin treatment indicated that acacetin may regulate lipid metabolism through the AMPK pathway. Acacetin may protect against hepatic steatosis by modulating inflammation and AMPK expression. Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Flavones; Inflammation; Lipid Metabolism; Lipogenesis; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Non-alcoholic Fatty Liver Disease; Obesity; Triglycerides | 2022 |
Acacetin ameliorates insulin resistance in obesity mice through regulating Treg/Th17 balance via MiR-23b-3p/NEU1 Axis.
The role of miR-23b-3p in insulin resistance (IR) remained poorly understood.. After acacetin injection, obesity-induced IR model was constructed with or without miR-23b-3p upregulation and Neuraminidase 1 (NEU1) overexpression in mice. Body weight, serum metabolite and fat percent of the mice were measured. Tests on oral glucose and insulin tolerance were performed, and inflammatory cytokines C-reactive protein (CRP), Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein 1 (MCP1) levels were quantified with enzyme-linked immunosorbent assay (ELISA). The binding sites between miR-23b-3p and NEU1 were predicted by TargetScan, and verified using dual-luciferase reporter assay. Relative expressions were detected with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Proportion of Treg and Th17 cells in total CD4. MiR-23b-3p offset the effects of acacetin on body weight, fat percent, inflammatory cytokines levels and expressions of markers of regulatory T cells (Treg cells) and T helper 17 cells (Th17 cells), NEU1 and miR-23b-3p. NEU1 was a target of miR-23b-3p, and overexpressed NEU1 reversed the effects of upregulated miR-23b-3p on reducing Treg cells but increased body weight, fat percent and inflammatory cytokines levels, percentage of Th17 cells, and upregulated NEU1 expression.. Upregulation of miR-23b-3p offset the effects of acacetin on obesity-induced IR through regulating Treg/Th17 cell balance via targeting NEU1.The present findings provide a possible prevention strategy for obesity-induced IR. Topics: Animals; Flavones; Insulin Resistance; Male; Mice, Inbred C57BL; MicroRNAs; Neuraminidase; Obesity; Th17 Cells | 2021 |