acacetin has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 2 studies
2 other study(ies) available for acacetin and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
The natural flavone acacetin protects against high-fat diet-induced lipid accumulation in the liver via the endoplasmic reticulum stress/ferroptosis pathway.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. To date, no medication has been approved to treat NAFLD. In this study, we evaluated the therapeutic effect of the natural flavone acacetin on high-fat diet (HFD)-induced NAFLD in mice and the underlying mechanisms. We found that acacetin (10, 20, 50 mg/kg/day) suppressed the increase in body weight, serum total cholesterol, triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels in mice fed with HFD with a dose-dependent manner. Hepatic lipid accumulation, iron overload, and lipid peroxidation were significantly alleviated by acacetin. Quantitative PCR and western blotting revealed that acacetin inhibited endoplasmic reticulum (ER) stress, ferroptosis, and expressions of lipid acid synthesis-related genes in the livers of HFD mice. Similar results were observed in HepG2 cells treated with oleic acid and lipopolysaccharide. The suppressive effects of acacetin on triglycerides and expression of lipid acid synthesis genes were abolished by ER stress and the ferroptosis activators, erastin or TU. Interestingly, the action of TU was more potent than that of erastin. Treatment with the ER stress inhibitor GSK and the ferroptosis inhibitor Fer-1 revealed that ER stress was the upstream signal of ferroptosis for hepatic lipid accumulation. These findings suggest the protective effect of acacetin against lipid accumulation via suppressing ER stress and ferroptosis and provide evidence that ER stress is an upstream signal of ferroptosis in lipid accumulation. Acacetin may be a promising candidate agent for NAFLD treatment. Topics: Animals; Diet, High-Fat; Endoplasmic Reticulum Stress; Ferroptosis; Flavones; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Triglycerides | 2023 |
Acacetin Protects against Non-Alcoholic Fatty Liver Disease by Regulating Lipid Accumulation and Inflammation in Mice.
We previously demonstrated that acacetin reduces adipogenesis in adipocytes, and decreases lipid accumulation in visceral adipocyte tissue. Here we investigated whether acacetin regulated the mechanisms of lipogenesis and inflammation in non-alcoholic fatty liver disease (NAFLD) in obese mice. Male C57BL/6 mice were fed a high-fat diet (HFD), and then administered acacetin by intraperitoneal injection. Acacetin reduced body weight and liver weight in obese mice. Acacetin-treated obese mice exhibited decreased lipid accumulation, increased glycogen accumulation, and improved hepatocyte steatosis. Acacetin regulated triglycerides and total cholesterol in the liver and serum. Acacetin decreased low-density lipoprotein and leptin concentrations, but increased high-density lipoprotein and adiponectin levels in obese mice. Acacetin effectively weakened the gene expressions of transcription factors related to lipogenesis, and promoted the expressions of genes related to lipolysis and fatty acid β-oxidation in liver. Acacetin also reduced expressions of inflammation-related cytokines in the serum and liver. Oleic acid induced lipid accumulation in murine FL83B hepatocytes, and the effects of acacetin treatment indicated that acacetin may regulate lipid metabolism through the AMPK pathway. Acacetin may protect against hepatic steatosis by modulating inflammation and AMPK expression. Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Flavones; Inflammation; Lipid Metabolism; Lipogenesis; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Non-alcoholic Fatty Liver Disease; Obesity; Triglycerides | 2022 |