abt-869 and Leukemia--Myeloid--Acute

abt-869 has been researched along with Leukemia--Myeloid--Acute* in 3 studies

Other Studies

3 other study(ies) available for abt-869 and Leukemia--Myeloid--Acute

ArticleYear
Synthesis and biological evaluation of 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine covalent inhibitors as potential agents for the treatment of acute myeloid leukemia.
    Bioorganic & medicinal chemistry, 2022, 09-15, Volume: 70

    Fms-like tyrosine kinase 3 (FLT3) mutation has been strongly associated with increased risk of relapse, and the irreversible covalent FLT3 inhibitors had the potential to overcome the drug-resistance. In this study, a series of simplified 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine derivatives containing two types of Michael acceptors (vinyl sulfonamide, acrylamide) were conveniently synthesized to target FLT3 and its internal tandem duplications (ITD) mutants irreversibly. The kinase inhibitory activities showed that compound C14 displayed potent inhibition activities against FLT3 (IC

    Topics: Amines; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Mutation; Protein Kinase Inhibitors

2022
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Discovery of 3-phenyl-1H-5-pyrazolylamine derivatives containing a urea pharmacophore as potent and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3).
    Bioorganic & medicinal chemistry, 2013, Jun-01, Volume: 21, Issue:11

    Preclinical investigations and early clinical trials suggest that FLT3 inhibitors are a viable therapy for acute myeloid leukemia. However, early clinical data have been underwhelming due to incomplete inhibition of FLT3. We have developed 3-phenyl-1H-5-pyrazolylamine as an efficient template for kinase inhibitors. Structure-activity relationships led to the discovery of sulfonamide, carbamate and urea series of FLT3 inhibitors. Previous studies showed that the sulfonamide 4 and carbamate 5 series were potent and selective FLT3 inhibitors with good in vivo efficacy. Herein, we describe the urea series, which we found to be potent inhibitors of FLT3 and VEGFR2. Some inhibited growth of FLT3-mutated MOLM-13 cells more strongly than the FLT3 inhibitors sorafenib (2) and ABT-869 (3). In preliminary in vivo toxicity studies of the four most active compounds, 10f was found to be the least toxic. A further in vivo efficacy study demonstrated that 10f achieved complete tumor regression in a higher proportion of MOLM-13 xenograft mice than 4 and 5 (70% vs 10% and 40%). These results show that compound 10f possesses improved pharmacologic and selectivity profiles and could be more effective than previously disclosed FLT3 inhibitors in the treatment of acute myeloid leukemia.

    Topics: Animals; Antineoplastic Agents; Benzamides; Cell Line, Tumor; Cell Proliferation; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Inhibitory Concentration 50; Leukemia, Myeloid, Acute; Mice; Protein Kinase Inhibitors; Sensitivity and Specificity; Structure-Activity Relationship; Urea; Xenograft Model Antitumor Assays

2013