abt-737 and Melanoma

abt-737 has been researched along with Melanoma* in 1 studies

Other Studies

1 other study(ies) available for abt-737 and Melanoma

ArticleYear
Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Dec-04, Volume: 104, Issue:49

    Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.

    Topics: Animals; Antineoplastic Agents; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; Boronic Acids; Bortezomib; Cell Line, Tumor; Cysteine Proteinase Inhibitors; Drug Resistance, Neoplasm; Humans; Indoles; Melanoma; Mice; Mitochondria; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Proteasome Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyrazines; Pyrroles

2007