abexinostat and Neoplasms

abexinostat has been researched along with Neoplasms* in 2 studies

Trials

2 trial(s) available for abexinostat and Neoplasms

ArticleYear
Pharmacokinetic/Pharmacodynamic modeling of abexinostat-induced thrombocytopenia across different patient populations: application for the determination of the maximum tolerated doses in both lymphoma and solid tumour patients.
    Investigational new drugs, 2014, Volume: 32, Issue:5

    In the clinical development of oncology drugs, the recommended dose is usually determined using a 3 + 3 dose-escalation study design. However, this phase I design does not always adequately describe dose-toxicity relationships.. 125 patients, with either solid tumours or lymphoma, were included in the study and 1217 platelet counts were available over three treatment cycles. The data was used to build a population pharmacokinetic/pharmacodynamic (PKPD) model using a sequential modeling approach. Model-derived Recommended Doses (MDRD) of abexinostat (a Histone Deacetylase Inhibitor) were determined from simulations of different administration schedules, and the higher bound for the probability of reaching these MDRD with a 3 + 3 design were obtained.. The PKPD model developed adequately described platelet kinetics in both patient populations with the inclusion of two platelet baseline counts and a disease progression component for patients with lymphoma. Simulation results demonstrated that abexinostat administration during the first 4 days of each week in a 3-week cycle led to a higher MDRD compared to the other administration schedules tested, with a maximum probability of 40 % of reaching these MDRDs using a 3 + 3 design.. The PKPD model was able to predict thrombocytopenia following abexinostat administration in both patient populations. A model-based approach to determine the recommended dose in phase I trials is preferable due to the imprecision of the 3 + 3 design.

    Topics: Antineoplastic Agents; Benzofurans; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Maximum Tolerated Dose; Models, Biological; Neoplasms; Thrombocytopenia

2014
Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I.
    European journal of cancer (Oxford, England : 1990), 2013, Volume: 49, Issue:13

    Abexinostat, an oral pan-histone deacetylase inhibitor (HDACi), was evaluated in patients with advanced solid tumours in two single agent phase I studies (PCYC-402 and CL1-78454-002). In PCYC-402 study testing four different administration schedules, the maximum tolerated dose (MTD) was established at 75 mg/m(2) BID (twice daily) and the recommended dose at 60 mg/m(2) BID regardless of the schedule tested. The dose limiting toxicity (DLT), consistently observed across all these schedules, was reversible thrombocytopenia. The CL1-78454-002 study was initially investigating an additional schedule of 14 days on/7 days off. While testing two first cohorts, thrombocytopenia was observed without reaching DLT. To address this issue, a pharmacokinetic/pharmacodynamic (PK/PD) model was used to predict the optimal schedule allowing higher doses with minimal thrombocytopenia. Several administration schedules were simulated using this model. A 4 days on/3 days off schedule was associated with the smallest platelet decrease. Accordingly, the CL1-78454-002 study was amended. After reaching MTD1 (75 mg/m(2) BID) with the initial schedule, subsequent cohorts received abexinostat on a revised schedule of 4 days on/3 days off, starting at one dose level below MTD1 (60 mg/m(2) BID). As expected, the dose-escalation continued for two more dose levels beyond MTD1. The MTD2 reached for this optimised schedule was 105 mg/m(2) BID and the recommended dose 90 mg/m(2) BID. In conclusion, early understanding of toxicities and PK determination allowed us to build a PK/PD model of thrombocytopenia, which predicted the optimal administration schedule. This optimised schedule is currently used in the trials in solid tumours with abexinostat.

    Topics: Administration, Intravenous; Administration, Oral; Benzofurans; Computer Simulation; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Dosage Calculations; France; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Maximum Tolerated Dose; Models, Biological; Neoplasms; Platelet Count; Thrombocytopenia

2013