abacavir has been researched along with Medulloblastoma* in 2 studies
2 other study(ies) available for abacavir and Medulloblastoma
Article | Year |
---|---|
Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs.
Medulloblastoma (MB) is the most common pediatric brain tumor. Current treatment regimes consisting of primary surgery followed by radio- and chemotherapy, achieve 5-year overall survival rates of only about 60 %. Therapy-induced endocrine and neurocognitive deficits are common late adverse effects. Thus, improved antitumor strategies are urgently needed. In this study, we combined irradiation (IR) together with epigenetic modifiers and differentiation inducers in a multimodal approach to enhance the efficiency of tumor therapy in MB and also assessed possible late adverse effects on neurogenesis.. In three human MB cell lines (DAOY, MEB-Med8a, D283-Med) short-time survival (trypan blue exclusion assay), apoptosis, autophagy, cell cycle distribution, formation of gH2AX foci, and long-term reproductive survival (clonogenic assay) were analyzed after treatment with 5-aza-2'-deoxycytidine (5-azadC), valproic acid (VPA), suberanilohydroxamic acid (SAHA), abacavir (ABC), all-trans retinoic acid (ATRA) and resveratrol (RES) alone or combined with 5-aza-dC and/or IR. Effects of combinatorial treatments on neurogenesis were evaluated in cultured murine hippocampal slices from transgenic nestin-CFPnuc C57BL/J6 mice. Life imaging of nestin-positive neural stem cells was conducted at distinct time points for up to 28 days after treatment start.. All tested drugs showed a radiosynergistic action on overall clonogenic survival at least in two-outof-three MB cell lines. This effect was pronounced in multimodal treatments combining IR, 5-aza-dC and a second drug. Hereby, ABC and RES induced the strongest reduction of clongenic survival in all three MB cell lines and led to the induction of apoptosis (RES, ABC) and/or autophagy (ABC). Additionally, 5-aza-dC, RES, and ABC increased the S phase cell fraction and induced the formation of gH2AX foci at least in oneout-of-three cell lines. Thereby, the multimodal treatment with 5-aza-dC, IR, and RES or ABC did not change the number of normal neural progenitor cells in murine slice cultures.. In conclusion, the radiosensitizing capacities of epigenetic and differentiation-inducing drugs presented here suggest that their adjuvant administration might improve MB therapy. Thereby, the combination of 5-aza-dC/IR with ABC and RES seemed to be the most promising to enhance tumor control without affecting the normal neural precursor cells. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Azacitidine; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cerebellar Neoplasms; Combined Modality Therapy; Decitabine; Dideoxynucleosides; Epigenesis, Genetic; Humans; Hydroxamic Acids; Medulloblastoma; Mice; Neurogenesis; Radiation-Sensitizing Agents; Resveratrol; Stilbenes; Treatment Outcome; Tretinoin; Valproic Acid; Vorinostat; Xenograft Model Antitumor Assays | 2016 |
The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells.
Abacavir is one of the most efficacious nucleoside analogues, with a well-characterized inhibitory activity on reverse transcriptase enzymes of retroviral origin, and has been clinically approved for the treatment of AIDS. Recently, Abacavir has been shown to inhibit also the human telomerase activity. Telomerase activity seems to be required in essentially all tumours for the immortalization of a subset of cells, including cancer stem cells. In fact, many cancer cells are dependent on telomerase for their continued replication and therefore telomerase is an attractive target for cancer therapy. Telomerase expression is upregulated in primary primitive neuroectodermal tumours and in the majority of medulloblastomas suggesting that its activation is associated with the development of these diseases. Therefore, we decided to test Abacavir activity on human medulloblastoma cell lines with high telomerase activity. We report that exposure to Abacavir induces a dose-dependent decrease in the proliferation rate of medulloblastoma cells. This is associated with a cell accumulation in the G(2)/M phase of the cell cycle in the Daoy cell line, and with increased cell death in the D283-MED cell line, and is likely to be dependent on the inhibition of telomerase activity. Interestingly, both cell lines showed features of senescence after Abacavir treatment. Moreover, after Abacavir exposure we detected, by immunofluorescence staining, increased protein expression of the glial marker glial fibrillary acidic protein and the neuronal marker synaptophysin in both medulloblastoma cell lines. In conclusion, our results suggest that Abacavir reduces proliferation and induces differentiation of human medulloblastoma cells through the downregulation of telomerase activity. Thus, using Abacavir, alone or in combination with current therapies, might be an effective therapeutic strategy for the treatment of medulloblastoma. Topics: Anti-HIV Agents; Cell Cycle; Cell Differentiation; Cell Proliferation; Cerebellar Neoplasms; Child; Child, Preschool; Dideoxynucleosides; Fluorescent Antibody Technique; Glial Fibrillary Acidic Protein; Humans; Male; Medulloblastoma; Peritoneal Neoplasms; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Synaptophysin; Telomerase; Tumor Cells, Cultured | 2009 |