a-803467 has been researched along with Disease-Models--Animal* in 13 studies
13 other study(ies) available for a-803467 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of Na
Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (Na Topics: Action Potentials; Aged; Aniline Compounds; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cells, Cultured; Disease Models, Animal; Female; Furans; Heart Rate; Humans; Male; Mice, Knockout; Middle Aged; Myocytes, Cardiac; NAV1.8 Voltage-Gated Sodium Channel; Picolinic Acids; Sodium Channel Blockers | 2020 |
Targeting the Nav1.8 ion channel engenders sex-specific responses in lysophosphatidic acid-induced joint neuropathy.
Joint neuropathic pain occurs in a subset of arthritis patients, and lysophosphatidic acid (LPA) has been implicated as a mediator of joint neuropathy. The mechanism by which LPA promotes neuropathic pain is unknown but may be related to altered signalling of the voltage-gated sodium channel Nav1.8 located on nociceptors. Because arthritis and neuropathic pain are more prevalent in females, this study aimed to explore potential sex differences in the development of LPA-induced joint neuropathy and whether Nav1.8 played a role in the associated neuropathic pain. Joint neuropathy was induced in male and female Wistar rats (179-284 g) by intra-articular injection of 50-µg LPA. Pain behaviour was assessed over 21 days using von Frey hair algesiometry. On day 21, electrophysiological recordings of joint primary afferents were conducted to measure peripheral sensitisation. Saphenous nerve morphology and expression of the nerve-damage marker ATF3 and Nav1.8 in ipsilateral dorsal root ganglions were compared on the basis of sex. The analgesic properties of the selective Nav1.8 antagonist A-803467 was determined in pain behaviour and electrophysiology experiments. Females developed more severe mechanical allodynia than males after LPA treatment. Lysophosphatidic acid caused more pronounced demyelination of the saphenous nerve in females, but no sex differences were observed in the expression of ATF3 or Nav1.8 in dorsal root ganglion neurones. Blockade of Nav1.8 channels with A-803467 resulted in a decrease in joint mechanosensitivity and secondary allodynia with females exhibiting a greater response. These findings suggest that LPA has sex-specific effects on joint neuropathy and Nav1.8 gating, which should be considered when treating neuropathic arthritis patients. Topics: Activating Transcription Factor 3; Aniline Compounds; Animals; Arthralgia; Disease Models, Animal; Exploratory Behavior; Female; Furans; Hyperalgesia; Knee Joint; Lysophospholipids; Male; NAV1.8 Voltage-Gated Sodium Channel; Pain Measurement; Rats; Rats, Wistar; Sex Characteristics; Stilbamidines | 2019 |
Dynamic weight bearing as a non-reflexive method for the measurement of abdominal pain in mice.
Chronic pelvic pain (CPP) is a high burden for patients and society. It affects 15-24% of women in reproductive age and is an area of high unmet medical need. CPP can be caused by a wide range of visceral diseases such as abdominal infections, gastrointestinal or gynaecological diseases like endometriosis. Despite the high medical need for this condition, pharmacological approaches are hampered by the limited number of available methods for the behavioural evaluation of pain in inflammation-driven animal models of pelvic pain.. The dynamic weight bearing (DWB) system was used for the evaluation of spontaneous behaviour changes in the zymosan-induced peritonitis mouse model. Inflammatory mediator levels were evaluated in peritoneal lavage and their correlation with the behavioural endpoints was assessed. We evaluated the effect on behavioural endpoints of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib and the Nav 1.8 blocker A-803467.. The presence of a relief posture, characterized by a significantly increased weight distribution towards the front paws, was observed following intraperitoneal injection of zymosan. A positive correlation was detected between PGE2 levels in the peritoneal lavage and DWB endpoints. In addition, zymosan-induced weight bearing changes were reverted by celecoxib and A-803467.. This study described for the first time the use of DWB as a non-subjective and non-reflexive method for the evaluation of inflammatory-driven abdominal pain in a mouse model. Topics: Abdominal Pain; Aniline Compounds; Animals; Behavior, Animal; Celecoxib; Chronic Pain; Cyclooxygenase 2 Inhibitors; Dinoprostone; Disease Models, Animal; Furans; Inflammation; Mice; Pain Measurement; Pelvic Pain; Peritoneal Lavage; Peritonitis; Sodium Channel Blockers; Weight-Bearing; Zymosan | 2016 |
Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: An in vivo electrophysiological study in the rat.
Voltage-gated sodium channel blockers are not traditionally recommended for osteoarthritis (OA) pain therapy, but given the large peripheral drive that follows OA development there is a rationale for their use. Using a rat model of monosodium iodoacetate (MIA)-induced OA we used in vivo electrophysiology to assess the effects of the Nav1.7- and Nav1.8-selective antagonists, ProTxII and A-803467 respectively, on the evoked activity of spinal dorsal horn neurons in response to electrical, mechanical and thermal stimuli applied to the peripheral receptive field. These studies allow examination of the roles of these channels in suprathreshold stimuli, not amenable to behavioral threshold measures. Spinal administration of ProTxII significantly reduced neuronal responses evoked by mechanical punctate (von Frey (vF) 8-60g) and noxious thermal (45 and 48°C) stimuli in MIA rats only. A-803467 significantly inhibited neuronal responses evoked by vF 8-60g and 48°C heat after spinal administration; significantly inhibited responses evoked by brush, vFs 26-60g and 40-48°C stimuli after systemic administration; significantly inhibited the electrically evoked Aδ-, C-fiber, post-discharge, Input and wind-up responses and the brush, vFs 8-60g and 45-48°C evoked neuronal responses after intra plantar injection in the MIA group. In comparison A-803467 effects in the sham group were minimal and included a reduction of the neuronal response evoked by vF 60g and 45°C heat stimulation after spinal administration, no effect after systemic administration and an inhibition of the evoked response to 45°C heat after intra plantar injection only. The observed selective inhibitory effect of ProTxII and A-803467 for the MIA-treated group suggests an increased role of Nav1.7 and 1.8 within nociceptive pathways in the arthritic condition, located at peripheral and central sites. These findings demonstrate the importance of, and add to, the mechanistic understanding of these channels in osteoarthritic pain. Topics: Analgesics; Analysis of Variance; Aniline Compounds; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Evoked Potentials; Functional Laterality; Furans; Hyperalgesia; Laminectomy; NAV1.7 Voltage-Gated Sodium Channel; NAV1.8 Voltage-Gated Sodium Channel; Osteoarthritis; Pain Measurement; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers | 2015 |
Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.
Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity. Topics: Aniline Compounds; Animals; Ciguatoxins; Cold Temperature; Cryopyrin-Associated Periodic Syndromes; Disease Models, Animal; Furans; Male; Microelectrodes; NAV1.8 Voltage-Gated Sodium Channel; Neurons; Neurotransmitter Agents; Nicotinic Acids; Oximes; Rats, Sprague-Dawley; Spinal Cord; Touch; TRPA1 Cation Channel; TRPC Cation Channels; TRPM Cation Channels; Voltage-Gated Sodium Channel Blockers | 2015 |
Blockade of Nav1.8 currents in nociceptive trigeminal neurons contributes to anti-trigeminovascular nociceptive effect of amitriptyline.
Amitriptyline (AMI), a tricyclic antidepressant, has been widely used to prevent migraine attacks and alleviate other various chronic pain, but the underlying mechanism remains unclear. Accumulated evidence suggests that the efficacy of AMI is related to the blockade of voltage-gated sodium channels. The aim of the present study was to investigate the effect of AMI on Na(v)1.8 currents in nociceptive trigeminal neurons and trigeminovascular nociception induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus (SSS) in rats, as in the animal model of vascular headaches such as migraines. Using a whole-cell voltage recording technique, we showed that Na(v)1.8 currents were blocked by AMI in a concentration-dependent manner, with an IC50 value of 6.82 μM in acute isolated trigeminal ganglion neurons of the rats. AMI caused a hyperpolarizing shift in the voltage-dependent activation and steady-state inactivation and significantly blocked in a use-dependent manner and slowed the recovery from the inactivation of Na(v)1.8 currents. In addition, the systemic administration of AMI and A-803467 (a selective Na(v)1.8 channel blocker) potently alleviated the nociceptive behaviors (head flicks and grooming) induced by the electrical stimulation of the dura mater surrounding the SSS. Taken together, our data suggest that Na(v)1.8 currents in nociceptive trigeminal neurons are blocked by AMI through modulating the activation and inactivation kinetics, which may contribute to anti-nociceptive effect of AMI in animal models of migraines. Topics: Afferent Pathways; Amitriptyline; Aniline Compounds; Animals; Blood Vessels; Disease Models, Animal; Dose-Response Relationship, Drug; Dura Mater; Electric Stimulation; Furans; Ion Channel Gating; Male; Migraine Disorders; NAV1.8 Voltage-Gated Sodium Channel; Nociception; Nociceptors; Rats; Rats, Sprague-Dawley; Single-Blind Method; Sodium; Sodium Channel Blockers; Superior Sagittal Sinus; Tetrodotoxin; Trigeminal Nerve | 2014 |
Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia.
Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown.. Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chronic hyperalgesia induced by a second acid insult. The plastic changes of muscle nociceptors were modality-specific and required the activation of acid-sensing ion channel 3 (ASIC3) or transient receptor potential cation channel V1 (TRPV1). Activation of ASIC3 was associated with increased activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels but not protein kinase Cϵ (PKCϵ) in isolectin B4 (IB4)-negative muscle nociceptors. In contrast, increased activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation in NaV1.8-positive muscle nociceptors was required for the development of chronic hyperalgesia. Accordingly, compared to wild type mice, NaV1.8-null mice showed briefer acid-induced hyperalgesia (5 days vs. >27 days).. ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain. Topics: Acid Sensing Ion Channels; Acute Pain; Aniline Compounds; Animals; Cells, Cultured; Chronic Pain; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibromyalgia; Furans; Ganglia, Spinal; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Muscle, Skeletal; NAV1.8 Voltage-Gated Sodium Channel; Sodium Channel Blockers; TRPV Cation Channels | 2014 |
The differential effect of intrathecal Nav1.8 blockers on the induction and maintenance of capsaicin- and peripheral ischemia-induced mechanical allodynia and thermal hyperalgesia.
It has been reported that the selective blockade of Nav1.8 sodium channels could be a possible target for the development of analgesics without unwanted side effects. However, the precise role of spinal Nav1.8 in the induction and maintenance of persistent pain, e.g., mechanical allodynia (MA) and thermal hyperalgesia (TH), is not clear. We designed this study to investigate whether spinal Nav1.8 contributes to capsaicin-induced and peripheral ischemia-induced MA and TH.. The Nav1.8 blockers, A-803467 or ambroxol, were injected intrathecally either before or after intraplantar capsaicin injection. To evaluate capsaicin-induced neuronal activation in the spinal cord, we quantified the number of Fos-immunoreactive cells in the dorsal horn. In the thrombus-induced ischemic pain model, we determined the differential effect of A-803467 on the induction phase or maintenance phase of MA.. Intrathecal injection of A-803467 (10, 30, 100 nmol) or ambroxol (241, 724, 2410 nmol) before intraplantar injection of capsaicin dose dependently prevented the induction of both MA and TH. However, posttreatment with A-803467 (100 nmol) and ambroxol (2410 nmol) did not reduce the MA that had already developed, but did significantly suppress capsaicin-induced TH. Moreover, the capsaicin-induced increase of spinal Fos-immunoreactive cells was significantly diminished by pretreatment, but not posttreatment with Nav1.8 blockers. In thrombus-induced ischemic pain rats, repetitive treatments of A-803467 during the induction period also prevented the development of MA, whereas A-803467 treatments during the maintenance period were ineffective in preventing or reducing MA.. These results demonstrate that spinal activation of Nav1.8 mediates the early induction of MA, but not the maintenance of MA. However, both the induction and maintenance of TH are modulated by the intrathecal injection of Nav1.8 blockers. These findings suggest that early treatment with a Nav1.8 blocker can be an important factor in the clinical management of chronic MA associated with inflammatory and ischemic pain. Topics: Ambroxol; Aniline Compounds; Animals; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Furans; Hot Temperature; Hyperalgesia; Injections, Spinal; Ischemia; Male; NAV1.8 Voltage-Gated Sodium Channel; Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Sodium Channels; Spinal Cord; Time Factors | 2012 |
Involvement of Nav 1.8 sodium ion channels in the transduction of mechanical pain in a rodent model of osteoarthritis.
A subgroup of voltage gated sodium channels including Nav1.8 are exclusively expressed on small diameter primary afferent neurons and are therefore believed to be integral to the neurotransmission of nociceptive pain. The present study examined whether local application of A-803467, a selective blocker of the Nav 1.8 sodium channel, can reduce nociceptive transmission from the joint in a rodent model of osteoarthritis (OA).. OA-like changes were induced in male Wistar rats by an intra-articular injection of 3 mg sodium monoiodoacetate (MIA). Joint nociception was measured at day 14 by recording electrophysiologically from knee joint primary afferents in response to non-noxious and noxious rotation of the joint both before and following close intra-arterial injection of A-803467. The effect of Nav1.8 blockade on joint pain perception and secondary allodynia were determined in MIA treated animals by hindlimb incapacitance and von Frey hair algesiometry respectively.. A-803467 significantly reduced the firing rate of joint afferents during noxious rotation of the joint but had no effect during non-noxious rotation. In the pain studies, peripheral injection of A-803467 into OA knees attenuated hindlimb incapacitance and secondary allodynia.. These studies show for the first time that the Nav1.8 sodium channel is part of the molecular machinery involved in mechanotransduction of joint pain. Targeting the Nav1.8 sodium channel on joint nociceptors could therefore be useful for the treatment of OA pain, avoiding the unwanted side effects of non-selective nerve blocks. Topics: Analysis of Variance; Aniline Compounds; Animals; Arthralgia; Disease Models, Animal; Exploratory Behavior; Furans; Grooming; Hindlimb; Humans; Hyperalgesia; Injections, Intra-Articular; Iodoacetic Acid; Knee Joint; Male; Mechanotransduction, Cellular; NAV1.8 Voltage-Gated Sodium Channel; Osteoarthritis, Knee; Pain Measurement; Rats; Rats, Wistar; Sodium Channel Blockers | 2012 |
A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis.
Cerebellar dysfunction in multiple sclerosis (MS) contributes significantly to disability, is relatively refractory to symptomatic therapy, and often progresses despite treatment with disease-modifying agents. We previously observed that sodium channel Nav1.8, whose expression is normally restricted to the peripheral nervous system, is present in cerebellar Purkinje neurons in a mouse model of MS (experimental autoimmune encephalomyelitis [EAE]) and in humans with MS. Here, we tested the hypothesis that upregulation of Nav1.8 in cerebellum in MS and EAE has functional consequences contributing to symptom burden.. Electrophysiology and behavioral assessment were performed in a new transgenic mouse model overexpressing Nav1.8 in Purkinje neurons. We also measured EAE symptom progression in mice lacking Nav1.8 compared to wild-type littermates. Finally, we administered the Nav1.8-selective blocker A803467 in the context of previously established EAE to determine reversibility of MS-like deficits.. We report that, in the context of an otherwise healthy nervous system, ectopic expression of Nav1.8 in Purkinje neurons alters their electrophysiological properties, and disrupts coordinated motor behaviors. Additionally, we show that Nav1.8 expression contributes to symptom development in EAE. Finally, we demonstrate that abnormal patterns of Purkinje neuron firing and MS-like deficits in EAE can be partially reversed by pharmacotherapy using a Nav1.8-selective blocker.. Our results add to the evidence that a channelopathy contributes to cerebellar dysfunction in MS. Our data suggest that Nav1.8-specific blockers, when available for humans, merit study in MS. Topics: Aniline Compounds; Animals; Cerebellar Diseases; Cerebellum; Channelopathies; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Furans; Mice; Mice, Transgenic; Multiple Sclerosis; NAV1.8 Voltage-Gated Sodium Channel; Purkinje Cells; Sodium Channel Blockers; Sodium Channels; Up-Regulation | 2012 |
Discovery and biological evaluation of potent, selective, orally bioavailable, pyrazine-based blockers of the Na(v)1.8 sodium channel with efficacy in a model of neuropathic pain.
Na(v)1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons. It has been implicated in the pathophysiology of inflammatory and neuropathic pain, and we envisioned that selective blockade of Na(v)1.8 would be analgesic, while reducing adverse events typically associated with non-selective VGSC blocking therapeutic agents. Herein, we describe the preparation and characterization of a series of 6-aryl-2-pyrazinecarboxamides, which are potent blockers of the human Na(v)1.8 channel and also block TTx-r sodium currents in rat dorsal root ganglia (DRG) neurons. Selected derivatives display selectivity versus human Na(v)1.2. We further demonstrate that an example from this series is orally bioavailable and produces antinociceptive activity in vivo in a rodent model of neuropathic pain following oral administration. Topics: Administration, Oral; Animals; Disease Models, Animal; Drug Evaluation, Preclinical; Ganglia, Spinal; Humans; Microsomes; NAV1.8 Voltage-Gated Sodium Channel; Neuralgia; Neurons; Pyrazines; Rats; Sodium Channel Blockers; Sodium Channels; Structure-Activity Relationship | 2010 |
Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models.
Evidence implicating Nav1.8 and TRPV1 ion channels in various chronic pain states is extensive. In this study, we used isobolographic analysis to examine the in vivo effects of the combination of the Nav1.8 blocker A-803467 [5-(4-Chloro-phenyl)-furan-2-carboxylic acid (3,5-dimethoxy-phenyl)-amide] with 2 structurally distinct TRPV1 antagonists, A-840257 [1-(1H-Indazol-4-yl)-3-([R]-4-piperidin-1-yl-indan-1-yl)-urea] or A-425619 [1-Isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea]. The antinociceptive effects of the Nav1.8 blocker alone and in combination with each TRPV1 antagonist were examined in an inflammatory (complete Freund's adjuvant, CFA) and a neuropathic (spinal nerve ligation, SNL) pain model after systemic (intraperitoneal) administration. Alone, A-803467 was efficacious in both CFA and SNL models with ED(50) values of 70 (54.2 to 95.8) mg/kg and 70 (38.1 to 111.9) mg/kg, respectively. The ED(50) values of the TRPV1 antagonists A-840257 and A-425619 alone in the CFA model were 10 (3.6 to 14.9) mg/kg and 43 (24.1 to 62.2) mg/kg, respectively; both were without significant effect in the SNL model. A series of experiments incorporating 1:1, 3:1, or 0.3:1 ED(50) dose-ratio combinations of A-840257 and A-803467, or A-425619 and A-803467 were performed in both pain models, and the effective doses of mixtures that produced 50% antinociception (ED(50, mix)) were determined by isobolographic analysis. The ED(50, mix) in each case was not found to be statistically different than ED(50, add), the theoretical ED(50) calculated assuming additive effects. These data demonstrate that Nav1.8 blockers and TRPV1 antagonists administered in combination produce an additive effect in rat pain models. Using such a combination strategy to produce analgesia may potentially provide an improved therapeutic separation from unwanted in vivo side effects associated with blockade of either Nav1.8 or TRPV1 alone.. In this report, effects of coadministration of TRPV1 antagonists and A-803467, a Nav1.8 blocker, were investigated in preclinical rodent models of neuropathic and inflammatory pain. The 2 classes of novel antinociceptive agents produced an additive interaction in attenuating CFA-induced thermal hyperalgesia, providing a rationale for their use as a combination strategy in the clinic for treating inflammatory pain. Topics: Analgesics; Aniline Compounds; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Freund's Adjuvant; Furans; Inflammation; Isoquinolines; Male; NAV1.8 Voltage-Gated Sodium Channel; Nerve Tissue Proteins; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Sodium Channels; Spinal Nerves; Substance-Related Disorders; Treatment Outcome; TRPV Cation Channels; Urea | 2009 |