Isoliquiritigenin-4-4--dimethyl-ether has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for Isoliquiritigenin-4-4--dimethyl-ether and Breast-Neoplasms
Article | Year |
---|---|
Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein.
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP binding cassette family of transport proteins. BCRP has been found to confer multidrug resistance in cancer cells. A strategy to overcome resistance due to BCRP overexpression is the investigation of potent and specific BCRP inhibitors. The aim of the current study was to investigate different multi-substituted chalcones for their BCRP inhibition. We synthesized chalcones and benzochalcones with different substituents (viz. OH, OCH(3), Cl) on ring A and B of the chalcone structure. All synthesized compounds were tested by Hoechst 33342 accumulation assay to determine inhibitory activity in MCF-7 MX and MDCK cells expressing BCRP. The compounds were also screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity in the calcein AM accumulation assay and were found to be selective towards inhibition of BCRP. Substituents at position 2' and 4' on chalcone ring A were found to be essential for activity; additionally there was a great influence of substituents on ring B. Presence of 3,4-dimethoxy substitution on ring B was found to be optimal, while presence of 2- and 4-chloro substitution also showed a positive effect on BCRP inhibition. Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Cell Line, Tumor; Chalcones; Drug Resistance, Neoplasm; Female; Humans; Multidrug Resistance-Associated Proteins; Neoplasm Proteins | 2012 |
Synthesis and biological evaluation of (+/-)-abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breast cancer.
An efficient and economical synthesis of the naturally occurring aromatase inhibitor abyssinone II was performed. The synthesis features an optimized aromatic prenylation reaction in which an arylcopper intermediate is reacted with prenyl bromide to afford a key intermediate that was converted to a prenylated aromatic aldehyde. Condensation of the aldehyde with an o-hydroxyacetophenone under Claisen-Schmidt conditions afforded a chalcone that was deprotected and cyclized in the presence of sodium acetate in refluxing ethanol to afford (+/-)-abyssinone II. The synthesis proved to be versatile enough to provide an array of abyssinone II derivatives that were evaluated as aromatase inhibitors. Methylation of the 4'-hydroxyl group of (+/-)-abyssinone II resulted in a significant increase in aromatase inhibitory activity, and further smaller increases in activity resulted from the methylation of the 7-hydroxyl group and removal of the prenyl side chain. As a result of these structural changes, the most active flavanone of the series was 20 times more potent than (+/-)-abyssinone II (IC50 40.95 microM). Topics: Anticarcinogenic Agents; Aromatase; Aromatase Inhibitors; Breast Neoplasms; Female; Flavonoids; Humans; Stereoisomerism; Structure-Activity Relationship | 2007 |