CB-13 and Pain

CB-13 has been researched along with Pain* in 3 studies

Other Studies

3 other study(ies) available for CB-13 and Pain

ArticleYear
The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of central nervous system activity with repeated dosing.
    Pain, 2022, 08-01, Volume: 163, Issue:8

    Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.

    Topics: Analgesia; Analgesics; Animals; Cannabinoid Receptor Agonists; Central Nervous System; Female; Hyperalgesia; Male; Mice; Naphthalenes; Pain; Receptor, Cannabinoid, CB1

2022
γ-Carbolines: a novel class of cannabinoid agonists with high aqueous solubility and restricted CNS penetration.
    Bioorganic & medicinal chemistry letters, 2012, Feb-15, Volume: 22, Issue:4

    An oral, peripherally restricted CB1/CB2 agonist could provide an interesting approach to treat chronic pain by harnessing the analgesic properties of cannabinoids but without the well-known central side effects. γ-Carbolines are a novel class of potent mixed CB1/CB2 agonists characterized by attractive physicochemical properties including high aqueous solubility. Optimization of the series has led to the discovery of 29, which has oral activity in a rat inflammatory pain model and limited brain exposure at analgesic doses, consistent with a lower risk of CNS-mediated tolerability issues.

    Topics: Analgesics; Animals; Brain; Cannabinoids; Carbolines; Cell Line; Drug Stability; Humans; Molecular Structure; Pain; Rats; Solubility

2012
N-Methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of cannabinoid receptors agonists with low CNS penetration.
    Bioorganic & medicinal chemistry letters, 2012, Jun-15, Volume: 22, Issue:12

    Cannabinoid CB(1) receptor agonists exhibit potent analgesic effects in rodents and humans, but their clinical utility as analgesic drugs is often limited by centrally mediated side effects. We report herein the preparation of N-methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of hCB(1)/hCB(2) dual agonists with attractive physicochemical properties. More specifically, (R)-N,9-dimethyl-N-(4-(methylamino)-4-oxobutyl)-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamide, displayed an extremely low level of CNS penetration (Rat Cbr/Cplasma=0.005 or 0.5%) and was devoid of CNS side effects during pharmaco-dynamic testing.

    Topics: Analgesics; Animals; Biological Availability; Carbazoles; Central Nervous System; Humans; Pain; Permeability; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Solubility; Stereoisomerism; Structure-Activity Relationship

2012