9-deoxy-delta-9-prostaglandin-d2 and Leukemia--Basophilic--Acute

9-deoxy-delta-9-prostaglandin-d2 has been researched along with Leukemia--Basophilic--Acute* in 3 studies

Other Studies

3 other study(ies) available for 9-deoxy-delta-9-prostaglandin-d2 and Leukemia--Basophilic--Acute

ArticleYear
The biphasic effects of cyclopentenone prostaglandins, prostaglandin J(2) and 15-deoxy-Delta(12,14)-prostaglandin J(2) on proliferation and apoptosis in rat basophilic leukemia (RBL-2H3) cells.
    Biochemical pharmacology, 2004, Apr-01, Volume: 67, Issue:7

    Mast cells produce chemical mediators, including histamine and arachidonate metabolites such as prostaglandin D(2) (PGD(2)) after antigen stimulation. Cyclopentenone prostaglandins of the J series, prostaglandin J(2) (PGJ(2)) and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), are thought to be derivatives of PGD(2). In this study, the biphasic effects of the PGJ(2) and 15d-PGJ(2) on proliferation and apoptosis in rat basophilic leukemia cells (RBL-2H3), a tumor analog of mast cells, were examined. At low concentrations, 1 or 3 microM PGJ(2) and 15d-PGJ(2) induced cell proliferation, respectively. At high concentrations (10-30 microM) both the inhibition of viability and decrease in histamine content in RBL-2H3 cells were dose dependent. These effects were independent of the nuclear hormone receptor, peroxisome proliferator-activated receptor gamma (PPARgamma), since troglitazone, an agonist of PPARgamma did not cause any effects in RBL-2H3 cells. Cell death induced by PGJ(2) and 15d-PGJ(2) was the result of apoptotic processes, since RBL-2H3 cells treated with 30 microM of the prostaglandins had condensed nuclei, DNA fragmentation and increase in activities of caspase-3 and -9. Moreover, PGJ(2) or 15d-PGJ(2)-induced apoptotic effects were prevented by the caspase inhibitor, z-VAD-fmk. In conclusion, the PGJ(2) or 15d-PGJ(2)-induced apoptosis in RBL-2H3 cells occurs mainly via mitochondrial pathways instead of by PPARgamma-dependent mechanisms.

    Topics: Animals; Apoptosis; Caspase 3; Caspase 9; Caspases; Cell Division; Cyclopentanes; Drug Interactions; Enzyme Inhibitors; Histamine; Leukemia, Basophilic, Acute; Prostaglandin D2; Prostaglandins; Rats; Tumor Cells, Cultured

2004
Inhibition of monosodium urate monohydrate crystal-induced acute inflammation by retrovirally transfected prostaglandin D synthase.
    Arthritis and rheumatism, 2003, Volume: 48, Issue:10

    Hematopoietic prostaglandin D synthase (H-PGDS) is a key enzyme in the production of prostaglandin D and its J series metabolites. We evaluated the antiinflammatory effect of retrovirally transfected H-PGDS in order to investigate the role of H-PGDS in monosodium urate monohydrate (MSU) crystal-induced acute inflammation.. Expression of endogenous PGDS in a murine air-pouch model of MSU crystal-induced acute inflammation was determined by real-time polymerase chain reaction. H-PGDS complementary DNA (cDNA) was retrovirally transfected into C57BL/6J fibroblasts, and the cells were designated as C57-PGDS cells. Production of prostaglandins by C57-PGDS cells was measured by enzyme immunoassay. The effect of C57-PGDS cells on crystal-induced inflammation was investigated.. Injection of the crystals caused a rapid decrease in H-PGDS expression by infiltrating cells and by the soft tissues around the air pouches. In contrast, expression of interleukin-1beta (IL-1beta) and macrophage inflammatory protein 2 (MIP-2) as well as cellular infiltration were significantly increased during the early stage of inflammation. C57-PGDS cells, but not control cells, produced an increased amount of PGD(2) in vitro, but suppressed production of PGE(2). Injection of C57-PGDS cells into air pouches inhibited cellular infiltration and MIP-2 and IL-1beta expression.. In this murine air-pouch model of MSU crystal-induced inflammation, retrovirally transfected H-PGDS cDNA could reduce cellular infiltration, at least partly by inhibiting MIP-2 and IL-1beta. These findings suggest that gene therapy with H-PGDS may be useful for treating inflammatory diseases.

    Topics: Acute Disease; Animals; Arthritis, Gouty; Cell Line, Tumor; Chemokine CXCL2; Chemokines; Crystallization; Disease Models, Animal; Fibroblasts; Gene Expression Regulation, Enzymologic; Genetic Therapy; Interleukin-1; Intramolecular Oxidoreductases; Leukemia, Basophilic, Acute; Lipocalins; Macrophages; Male; Mice; Mice, Inbred C57BL; Prostaglandin D2; Rats; Retroviridae; Transfection; Uric Acid

2003
Identification of a cis-regulatory element for delta 12-prostaglandin J2-induced expression of the rat heme oxygenase gene.
    The Journal of biological chemistry, 1995, Sep-15, Volume: 270, Issue:37

    We recently reported that delta 12-prostaglandin (PG) J2 caused various cells to synthesize heme oxygenase, HO-1 (Koizumi, T., Negishi, M., and Ichikawa, A. (1992) Prostaglandins 43, 121-131). Here we examined the molecular mechanism underlying the delta 12-PGJ2-induced HO-1 synthesis. delta 12-PGJ2 markedly stimulated the promoter activity of the 5'-flanking region of the rat HO-1 gene from -810 to +101 in rat basophilic leukemia cells. From functional analysis of various deletion mutant genes we found that the delta 12-PGJ2-responsive element was localized in a region from -690 to -660, containing an E-box motif, which was essential for the delta 12-PGJ2-stimulated promoter activity. When the region containing the delta 12-PGJ2-responsive element was combined with a heterologous promoter, SV40 promoter, in the sense and antisense direction, the element showed an enhancer activity in response to delta 12-PGJ2. Gel mobility shift assays demonstrated that delta 12-PGJ2 specifically stimulated the binding of two nuclear proteins to the E-box motif of this region. These results indicate that delta 12-PGJ2 induces the expression of the rat HO-1 gene through nuclear protein binding to a specific element having an E-box motif.

    Topics: Animals; Antineoplastic Agents; Base Sequence; Blotting, Northern; Cell Line; Chloramphenicol O-Acetyltransferase; Gene Expression; Heme Oxygenase (Decyclizing); Leukemia, Basophilic, Acute; Molecular Sequence Data; Mutagenesis; Mutagenesis, Site-Directed; Oligodeoxyribonucleotides; Plasmids; Point Mutation; Promoter Regions, Genetic; Prostaglandin D2; Rats; Recombinant Proteins; Regulatory Sequences, Nucleic Acid; Sequence Deletion; Simian virus 40; Transfection; Tumor Cells, Cultured

1995