9-arabinofuranosylguanine and Precursor-T-Cell-Lymphoblastic-Leukemia-Lymphoma

9-arabinofuranosylguanine has been researched along with Precursor-T-Cell-Lymphoblastic-Leukemia-Lymphoma* in 4 studies

Other Studies

4 other study(ies) available for 9-arabinofuranosylguanine and Precursor-T-Cell-Lymphoblastic-Leukemia-Lymphoma

ArticleYear
SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic leukaemias to nelarabine.
    Communications biology, 2020, 06-24, Volume: 3, Issue:1

    The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and the expression of SAMHD1, which can hydrolyse and inactivate triphosphorylated nucleoside analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 promoter methylation without increased global DNA methylation. SAMHD1 depletion sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 expression levels determine ALL cell response to nelarabine.

    Topics: Antineoplastic Agents; Arabinonucleosides; Biomarkers, Tumor; Cell Line, Tumor; DNA Methylation; Drug Resistance, Neoplasm; Gene Expression Regulation, Leukemic; Humans; Precursor B-Cell Lymphoblastic Leukemia-Lymphoma; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; Promoter Regions, Genetic; SAM Domain and HD Domain-Containing Protein 1

2020
Reduced drug incorporation into DNA and antiapoptosis as the crucial mechanisms of resistance in a novel nelarabine-resistant cell line.
    BMC cancer, 2014, Jul-29, Volume: 14

    Nine-beta-D-arabinofuranosylguanine (ara-G), an active metabolite of nelarabine, enters leukemic cells through human Equilibrative Nucleoside Transporter 1, and is then phosphorylated to an intracellular active metabolite ara-G triphosphate (ara-GTP) by both cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Ara-GTP is subsequently incorporated into DNA, thereby inhibiting DNA synthesis.. In the present study, we developed a novel ara-G-resistant variant (CEM/ara-G) of human T-lymphoblastic leukemia cell line CCRF-CEM, and elucidated its mechanism of ara-G resistance. The cytotoxicity was measured by using the growth inhibition assay and the induction of apoptosis. Intracellular triphosphate concentrations were quantitated by using HPLC. DNA synthesis was evaluated by the incorporation of tritiated thymidine into DNA. Protein expression levels were determined by using Western blotting.. CEM/ara-G cells were 70-fold more ara-G-resistant than were CEM cells. CEM/ara-G cells were also refractory to ara-G-mediated apoptosis. The transcript level of human Equilibrative Nucleoside Transporter 1 was lowered, and the protein levels of deoxycytidine kinase and deoxyguanosine kinase were decreased in CEM/ara-G cells. The subsequent production of intracellular ara-GTP (21.3 pmol/107 cells) was one-fourth that of CEM cells (83.9 pmol/107 cells) after incubation for 6 h with 10 μM ara-G. Upon ara-G treatment, ara-G incorporation into nuclear and mitochondrial DNA resulted in the inhibition of DNA synthesis of both fractions in CEM cells. However, DNA synthesis was not inhibited in CEM/ara-G cells due to reduced ara-G incorporation into DNA. Mitochondrial DNA-depleted CEM cells, which were generated by treating CEM cells with ethidium bromide, were as sensitive to ara-G as CEM cells. Anti-apoptotic Bcl-xL was increased and pro-apoptotic Bax and Bad were reduced in CEM/ara-G cells.. An ara-G-resistant CEM variant was successfully established. The mechanisms of resistance included reduced drug incorporation into nuclear DNA and antiapoptosis.

    Topics: Antineoplastic Agents; Apoptosis; Arabinonucleosides; Cell Line, Tumor; DNA; DNA Replication; Drug Resistance, Neoplasm; Humans; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma

2014
In vitro efficacy of forodesine and nelarabine (ara-G) in pediatric leukemia.
    Blood, 2011, Aug-25, Volume: 118, Issue:8

    Forodesine and nelarabine (the pro-drug of ara-G) are 2 nucleoside analogues with promising anti-leukemic activity. To better understand which pediatric patients might benefit from forodesine or nelarabine (ara-G) therapy, we investigated the in vitro sensitivity to these drugs in 96 diagnostic pediatric leukemia patient samples and the mRNA expression levels of different enzymes involved in nucleoside metabolism. Forodesine and ara-G cytotoxicities were higher in T-cell acute lymphoblastic leukemia (T-ALL) samples than in B-cell precursor (BCP)-ALL and acute myeloid leukemia (AML) samples. Resistance to forodesine did not preclude ara-G sensitivity and vice versa, indicating that both drugs rely on different resistance mechanisms. Differences in sensitivity could be partly explained by significantly higher accumulation of intracellular dGTP in forodesine-sensitive samples compared with resistant samples, and higher mRNA levels of dGK but not dCK. The mRNA levels of the transporters ENT1 and ENT2 were higher in ara-G-sensitive than -resistant samples. We conclude that especially T-ALL, but also BCP-ALL, pediatric patients may benefit from forodesine or nelarabine (ara-G) treatment.

    Topics: Antineoplastic Agents; Arabinonucleosides; Cell Line, Tumor; Child; Deoxycytidine Kinase; Deoxyguanine Nucleotides; Drug Resistance, Neoplasm; Equilibrative Nucleoside Transporter 1; Equilibrative-Nucleoside Transporter 2; Gene Expression; Humans; In Vitro Techniques; Leukemia, Myeloid, Acute; Leukemia, Prolymphocytic, B-Cell; Phosphotransferases (Alcohol Group Acceptor); Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; Prodrugs; Purine Nucleosides; Purines; Pyrimidinones; RNA, Messenger; RNA, Neoplasm

2011
Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints.
    Experimental cell research, 2010, Dec-10, Volume: 316, Issue:20

    The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.

    Topics: Animals; Apoptosis; Arabinonucleosides; Arabinonucleotides; Biocatalysis; Caspases; Cell Cycle; Cell Line; Cell Line, Tumor; Cell Proliferation; CHO Cells; Cricetinae; Cricetulus; Cytosol; Deoxycytidine Kinase; Deoxyguanine Nucleotides; Deoxyguanosine; Deoxyribonucleotides; DNA; DNA Replication; Fibroblasts; G1 Phase; Guanosine Triphosphate; Humans; Hypoxanthine Phosphoribosyltransferase; Kinetics; Mitochondria; Phosphotransferases (Alcohol Group Acceptor); Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; Purine-Nucleoside Phosphorylase; S Phase

2010