9-arabinofuranosylguanine and Leukemia--Myeloid--Acute

9-arabinofuranosylguanine has been researched along with Leukemia--Myeloid--Acute* in 3 studies

Other Studies

3 other study(ies) available for 9-arabinofuranosylguanine and Leukemia--Myeloid--Acute

ArticleYear
Combination of guanine arabinoside and Bcl-2 inhibitor YC137 overcomes the cytarabine resistance in HL-60 leukemia cell line.
    Cancer science, 2013, Volume: 104, Issue:4

    Cytarabine (ara-C) is the key agent for treating acute myeloid leukemia. After being transported into leukemic cells, ara-C is phosphorylated, by several enzymes including deoxycytidine kinase (dCK), to ara-C triphosphate (ara-CTP), an active metabolite, and then incorporated into DNA, thereby inhibiting DNA synthesis. Therefore, the cytotoxicity of ara-C depends on the production of ara-CTP and the induction of apoptosis. Here, we established a new ara-C-resistant acute myeloid leukemia cell line (HL-60/ara-C60) with dual resistance characteristics of the anti-antimetabolic character of decreased ara-CTP production and an increase in the antiapoptotic factors Bcl-2 and Bcl-XL. We further attempted to overcome resistance by augmenting ara-CTP production and stimulating apoptosis. A relatively new nucleoside analog, 9-β-d-arabinofuranosylguanine (ara-G), and the small molecule Bcl-2 antagonist YC137 were used for this purpose. HL-60/ara-C60 was 60-fold more ara-C-resistant than the parental HL-60 cells. HL-60/ara-C60 cells exhibited low dCK protein expression, which resulted in decreased ara-CTP production. HL-60/ara-C60 cells were also refractory to ara-C-induced apoptosis due to overexpression of Bcl-2 and Bcl-XL. Combination treatment of ara-C with ara-G augmented the dCK protein level, thereby increasing ara-CTP production and subsequent cytotoxicity. Moreover, the combination of ara-C with YC137 produced a greater amount of apoptosis than ara-C alone. Importantly, the three-drug combination of ara-C, ara-G and YC137 provided greater cytotoxicity than ara-C+ara-G or ara-C+YC137. These findings suggest possible combination strategies for overcoming ara-C resistance by augmenting ara-CTP production and reversing refractoriness against the induction of apoptosis in ara-C resistant leukemic cells.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Arabinonucleosides; Cytarabine; Drug Resistance, Neoplasm; HL-60 Cells; Humans; Leukemia, Myeloid, Acute; Proto-Oncogene Proteins c-bcl-2; Thiazoles

2013
In vitro efficacy of forodesine and nelarabine (ara-G) in pediatric leukemia.
    Blood, 2011, Aug-25, Volume: 118, Issue:8

    Forodesine and nelarabine (the pro-drug of ara-G) are 2 nucleoside analogues with promising anti-leukemic activity. To better understand which pediatric patients might benefit from forodesine or nelarabine (ara-G) therapy, we investigated the in vitro sensitivity to these drugs in 96 diagnostic pediatric leukemia patient samples and the mRNA expression levels of different enzymes involved in nucleoside metabolism. Forodesine and ara-G cytotoxicities were higher in T-cell acute lymphoblastic leukemia (T-ALL) samples than in B-cell precursor (BCP)-ALL and acute myeloid leukemia (AML) samples. Resistance to forodesine did not preclude ara-G sensitivity and vice versa, indicating that both drugs rely on different resistance mechanisms. Differences in sensitivity could be partly explained by significantly higher accumulation of intracellular dGTP in forodesine-sensitive samples compared with resistant samples, and higher mRNA levels of dGK but not dCK. The mRNA levels of the transporters ENT1 and ENT2 were higher in ara-G-sensitive than -resistant samples. We conclude that especially T-ALL, but also BCP-ALL, pediatric patients may benefit from forodesine or nelarabine (ara-G) treatment.

    Topics: Antineoplastic Agents; Arabinonucleosides; Cell Line, Tumor; Child; Deoxycytidine Kinase; Deoxyguanine Nucleotides; Drug Resistance, Neoplasm; Equilibrative Nucleoside Transporter 1; Equilibrative-Nucleoside Transporter 2; Gene Expression; Humans; In Vitro Techniques; Leukemia, Myeloid, Acute; Leukemia, Prolymphocytic, B-Cell; Phosphotransferases (Alcohol Group Acceptor); Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; Prodrugs; Purine Nucleosides; Purines; Pyrimidinones; RNA, Messenger; RNA, Neoplasm

2011
Sensitivity of T-leukemic cells to deoxyguanosine and arabinosyl guanine.
    Advances in experimental medicine and biology, 1984, Volume: 165 Pt B

    Topics: Arabinonucleosides; B-Lymphocytes; Child; Deoxyguanosine; DNA Replication; Humans; Leukemia, Myeloid; Leukemia, Myeloid, Acute; Lymphocytes, Null; T-Lymphocytes

1984