8-isoprostaglandin-e2 has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 8-isoprostaglandin-e2 and Inflammation
Article | Year |
---|---|
Thromboxane and isoprostanes as inflammatory and vasoactive mediators in black walnut heartwood extract induced equine laminitis.
Inflammation and vascular dysfunction occur concurrently during the prodromal stages of equine laminitis. The aim of this study was to provide insights into the role that thromboxane and isoprostanes may play in the development of black walnut heartwood extract (BWHE)-induced laminitis. Horses were divided into two groups, either control or BWHE-administered horses. Plasma concentrations of thromboxane increased transiently after administration of BWHE and coincided with the nadir in white blood cell counts, whereas plasma concentrations of iso-prostaglandin PGF(2alpha) (iso-PGF(2alpha)) did not change in either group. At 12h (for the control group) or Obel grade 1 laminitis (for the BWHE group) the horses were euthanized and laminar tissue collected. Laminar arteries and veins were used in functional studies with vasoconstrictor substances and tissue samples were used for the determination of laminar iso-PGF(2alpha) concentrations. Laminar tissue concentrations of iso-PGF(2alpha) were significantly greater in BWHE horses when compared to control horses. In parallel studies concentrations of iso-PGF(2alpha) in laminar tissue samples obtained 1.5 and 3h after administration of BWHE were indistinguishable from those for control horses at 3 or 12h after administration of an equal volume of water. Laminar vessel constrictor responses to either a thromboxane mimetic (U46619), iso-prostaglandin PGE(2) (iso-PGE(2)) or iso-PGF(2alpha) were determined using small vessel myographs. In some vessels, the effects of putative prostanoid and thromboxane receptor antagonists, SQ 29,548, SC-19220 and AH 6809, upon contractile responses were determined. In control horses, U46619, iso-PGF(2alpha) and iso-PGE(2) more potently and efficaciously constricted laminar veins when compared to laminar arteries. Responses of laminar veins from BWHE horses to iso-PGE(2) were similar to those of laminar veins from control horses, whereas iso-PGF(2alpha) elicited significantly greater responses in laminar veins from BWHE horses when compared to controls. In contrast, responses to U46619 were smaller in laminar veins isolated from BWHE horses when compared to those in laminar veins from control horses. In the presence of SQ 29,548, iso-PGF(2alpha) elicited a small dilation in laminar veins from control horses, which was not apparent in laminar veins from BWHE horses. These results are consistent with both systemic and local inflammatory events occurring during the prodromal stages of BWH Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Arteries; Dinoprost; Dinoprostone; Foot Diseases; Hoof and Claw; Horse Diseases; Horses; Inflammation; Isoprostanes; Juglans; Plant Extracts; Random Allocation; Thromboxanes; Tissue Culture Techniques; Vasoconstriction; Veins; Wood | 2009 |
Isoprostanes induce plasma extravasation in rat skin.
Isoprostane E2 (8-iso PGE) and isoprostane F2 alpha (8-iso PGF) contribute to numerous vascular, proinflammatory, and nociceptive functions. The underlying mechanisms for many of their actions are still under investigation. We examined the ability of isoprostanes to promote cutaneous inflammation using the Evan's blue dye method. Our data show that 4 micrograms subcutaneously (s.c.) injected 8-iso PGE or 8-iso PGF induced plasma extravasation in glabrous rat skin. Dye extravasation was also elicited in hairy skin after injections of 8-iso PGE, but not after 8-iso PGF. Isoprostane-evoked dye extravasation can be reduced by pretreatment with both the S+ and R- isomers of the cyclooxygenase (COX)-inhibitor ibuprofen (30 mg/kg intraperitoneally), indicating perhaps a nonspecific inhibition; pretreatment with ketorolac (1 and 10 mg/kg i.v.) was without effect. Unlike isoprostane-induced cutaneous nociceptor sensitization, which is blocked in a stereospecific and dose-dependent manner by COX-inhibitors, the effect of these drugs on isoprostane-induced cutaneous plasma extravasation is less consistent. We conclude that at least a large component of the isoprostane effect on cutaneous plasma extravasation is COX-independent. Topics: Animals; Cyclooxygenase Inhibitors; Dinoprost; Dinoprostone; Evans Blue; Extravasation of Diagnostic and Therapeutic Materials; F2-Isoprostanes; Ibuprofen; Inflammation; Injections, Subcutaneous; Isoprostanes; Ketorolac; Male; Rats | 2000 |