8-hydroxyguanosine has been researched along with Adenomatous-Polyposis-Coli* in 2 studies
2 other study(ies) available for 8-hydroxyguanosine and Adenomatous-Polyposis-Coli
Article | Year |
---|---|
Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer.
Inflammatory bowel disease patients have a greatly increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Using three models of CAC, we find that sustained inflammation triggers 8-oxoguanine DNA lesions. Strikingly, antioxidants or iNOS inhibitors reduce 8-oxoguanine and polyps in CAC models. Because the mismatch repair (MMR) system repairs 8-oxoguanine and is frequently defective in colorectal cancer (CRC), we test whether 8-oxoguanine mediates oncogenesis in a Lynch syndrome (MMR-deficient) model. We show that microbiota generates an accumulation of 8-oxoguanine lesions in MMR-deficient colons. Accordingly, we find that 8-oxoguanine is elevated in neoplastic tissue of Lynch syndrome patients compared to matched untransformed tissue or non-Lynch syndrome neoplastic tissue. While antioxidants reduce 8-oxoguanine, they do not reduce CRC in Lynch syndrome models. Hence, microbe-induced oxidative/nitrosative DNA damage play causative roles in inflammatory CRC models, but not in Lynch syndrome models. Topics: Adenomatous Polyposis Coli; Adult; Aged; Aged, 80 and over; Animals; Antioxidants; Carcinogenesis; Colitis; Colon; Colorectal Neoplasms; Colorectal Neoplasms, Hereditary Nonpolyposis; Dextran Sulfate; Disease Models, Animal; DNA Damage; DNA Repair; Dysbiosis; Escherichia coli; Female; Guanosine; Helicobacter Infections; Helicobacter pylori; Humans; Inflammation; Interleukin-10; Male; Mice, Inbred C57BL; Middle Aged; Mutation; Oxidative Stress | 2020 |
Mammalian MutY homolog (MYH or MUTYH) protects cells from oxidative DNA damage.
MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage. Topics: Adenomatous Polyposis Coli; Animals; Apoptosis; Cell Line, Tumor; Colorectal Neoplasms; DNA Damage; DNA Glycosylases; DNA Repair; Gene Expression Regulation; Gene Knockdown Techniques; Guanosine; HeLa Cells; Humans; Mice; Oxidative Stress; Signal Transduction | 2014 |