8-hydroxyguanine and Teratocarcinoma

8-hydroxyguanine has been researched along with Teratocarcinoma* in 3 studies

Other Studies

3 other study(ies) available for 8-hydroxyguanine and Teratocarcinoma

ArticleYear
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down's syndrome and familial amyotrophic lateral sclerosis.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Patients with Down's syndrome (DS) show elevated levels of copper, zinc-containing superoxide dismutase (SOD1) and appear to have increased lipid peroxidation and oxidative damage to DNA as well as elevated glutathione peroxidase activity. Increasing SOD1 levels by gene transfection in NT-2 and SK-N-MC cell lines also led to a rise in glutathione peroxidase activity, but this was nevertheless accompanied by decreased proliferation rates, increased lipid peroxidation and protein carbonyls, and a trend to a rise in 8-hydroxyguanine and protein-bound 3-nitrotyrosine. Transfection of these cell lines with DNA encoding two mutant SOD1 enzymes (G37R and G85R) associated with familial amyotrophic lateral sclerosis (FALS), produced similar, but more severe changes, i.e. even lower growth rates, higher lipid peroxidation, 3-nitrotyrosine and protein carbonyl levels, decreased GSH levels, raised GSSG levels and higher glutathione peroxidase activities. Since G85R has little SOD activity, these changes cannot be related to increased O(2)(-) scavenging. In no case was SOD2 (mitochondrial Mn-SOD) level altered. Our cellular systems reproduce many of the biochemical changes observed in patients with DS or ALS, and in transgenic mice overexpressing mutant SOD1. They also show the potentially deleterious effects of SOD1 overexpression on cellular proliferation, which may be relevant to abnormal development in DS.

    Topics: Aldehydes; Amyotrophic Lateral Sclerosis; Antioxidants; Cell Division; Cell Line; Cell Survival; Down Syndrome; Gene Expression; Glutathione; Glutathione Disulfide; Guanine; Humans; Ketones; Lipid Peroxidation; Mutation; Neuroblastoma; Oxidative Stress; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Transfection; Tyrosine

2001
Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Mutations in alpha-synuclein (A30P and A53T) are involved in some cases of familial Parkinson's disease (FPD), but it is not known how they result in nigral cell death. We examined the effect of alpha-synuclein overexpression on the response of cells to various insults. Wild-type alpha-synuclein and alpha-synuclein mutations associated with FPD were overexpressed in NT-2/D1 and SK-N-MC cells. Overexpression of wild-type alpha-synuclein delayed cell death induced by serum withdrawal or H(2)O(2), but did not delay cell death induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). By contrast, wild-type alpha-synuclein transfectants were sensitive to viability loss induced by staurosporine, lactacystin or 4-hydroxy-2-trans-nonenal (HNE). Decreases in glutathione (GSH) levels were attenuated by wild-type alpha-synuclein after serum deprivation, but were aggravated following lactacystin or staurosporine treatment. Mutant alpha-synucleins increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation and 3-nitrotyrosine, and markedly accelerated cell death in response to all the insults examined. The decrease in GSH levels was enhanced in mutant alpha-synuclein transfectants. The loss of viability induced by toxic insults was by apoptosic mechanism. The presence of abnormal alpha-synucleins in substantia nigra in PD may increase neuronal vulnerability to a range of toxic agents.

    Topics: 1-Methyl-4-phenylpyridinium; Aldehydes; alpha-Synuclein; Cell Division; Cell Line; Cell Survival; Clone Cells; Culture Media, Serum-Free; Enzyme Inhibitors; Gene Expression; Glutathione; Guanine; Humans; Hydrogen Peroxide; Ketones; Lipid Peroxidation; Mitochondria; Mutation; Nerve Tissue Proteins; Neuroblastoma; Oxidants; Oxidative Stress; Parkinsonian Disorders; Synucleins; Teratocarcinoma; Transfection; Tyrosine

2001
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and pro
    Journal of neurochemistry, 2001, Volume: 78, Issue:2

    Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.

    Topics: Aldehydes; Amino Acid Substitution; Cell Death; Cell Survival; Cross-Linking Reagents; Culture Media, Serum-Free; Genes, bcl-2; Guanine; Humans; Hydrogen Peroxide; Kinetics; Lipid Peroxidation; Motor Neuron Disease; Mutagenesis, Site-Directed; Neuroblastoma; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Recombinant Proteins; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Tumor Cells, Cultured; Tyrosine

2001