8-hydroxyguanine and Amyotrophic-Lateral-Sclerosis

8-hydroxyguanine has been researched along with Amyotrophic-Lateral-Sclerosis* in 3 studies

Other Studies

3 other study(ies) available for 8-hydroxyguanine and Amyotrophic-Lateral-Sclerosis

ArticleYear
Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis.
    Free radical research, 2005, Volume: 39, Issue:4

    Substantial evidence suggest that oxidative damage may play a role in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). We examined levels of 8-Hydroxy-2'-deoxyguanosine (8OH2'dG) in the nuclear DNA from the spinal cord, frontal cortex, striatum and cerebellum from G93A mice at 60, 90, and 120 days of age. We also used in vivo microdialysis to measure free levels of 8OH2'dG and 8-Hydroxyguanine (8OHG) at the same time points in the frontal cortex of G93A mice. Increased 8OH2'dG DNA levels were observed in the spinal cord (at 60, 90 and 120 days), in the cortex (at 90, and 120 days), and in the striatum (at 120 days), as compared to age-matched littermate controls. No significant changes were found in the cerebellum at any of the time points studied. Free levels of 8OH2'dG in the cortex of G93A mice were increased, as compared to control mice, at 90 and 120 days. Free levels of 8OHG were found to be significantly higher at 120 days of age in control mice than in G93A mice. These results provide evidence that in this model of ALS oixidative DNA-damage is increased and base excision-repair may be deficient.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Amyotrophic Lateral Sclerosis; Animals; Brain Chemistry; Chromatography, High Pressure Liquid; Deoxyguanosine; Disease Models, Animal; DNA Damage; Guanine; Humans; Male; Mice; Mice, Transgenic; Microdialysis; Oxidative Stress; Spinal Cord

2005
Impairment of mitochondrial DNA repair enzymes against accumulation of 8-oxo-guanine in the spinal motor neurons of amyotrophic lateral sclerosis.
    Acta neuropathologica, 2002, Volume: 103, Issue:4

    Oxidative stress plays an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In the present study, we investigated the expression of two major human enzymes that prevent errors caused by 8-oxoguanine (8-oxoG), a mitochondrial form of 8-oxoG DNA glycosylase (hOGG1) and oxidized purine nucleoside triphosphatase (hMTH1). We also investigated the relationship between their expression and the 8-oxoG accumulation observed in the large motor neurons of the lumbar spinal cord in seven cases of adult onset sporadic ALS, four cases of subarachnoid hemorrhage (SAH) and four control cases. 8-oxoG immunoreactivity increased in most large motor neurons in both the ALS and SAH cases. However, the large motor neurons in the control cases often lacked hOGG1 immunoreactivity, although some neurons expressed hOGG1 in either homogeneous or fine granular patterns. In SAH cases, most large motor neurons showed a fine granular pattern proportional to the increased 8-oxoG immunoreactivity. However, only half of the remaining motor neurons in ALS expressed hOGG1 in the fine granular pattern, and the rest did not show any immunoreactivity. In addition, small aggregates of hMTH1 in the nuclei of the anterior horn cells were present in several ALS cases. Our results indicate that the oxidative damage accumulates in the mitochondria of motor neurons in ALS, and that hOGG1 does not repair the damage efficiently, which may lead to a loss of motor neurons in ALS.

    Topics: Adaptor Proteins, Signal Transducing; Aged; Aged, 80 and over; Amyotrophic Lateral Sclerosis; DNA Repair; DNA-Formamidopyrimidine Glycosylase; DNA, Mitochondrial; Enzymes; Female; Fungal Proteins; Guanine; Humans; Immunoblotting; Immunohistochemistry; Male; Membrane Proteins; Middle Aged; Motor Neurons; N-Glycosyl Hydrolases; Saccharomyces cerevisiae Proteins; Spinal Cord

2002
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down's syndrome and familial amyotrophic lateral sclerosis.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Patients with Down's syndrome (DS) show elevated levels of copper, zinc-containing superoxide dismutase (SOD1) and appear to have increased lipid peroxidation and oxidative damage to DNA as well as elevated glutathione peroxidase activity. Increasing SOD1 levels by gene transfection in NT-2 and SK-N-MC cell lines also led to a rise in glutathione peroxidase activity, but this was nevertheless accompanied by decreased proliferation rates, increased lipid peroxidation and protein carbonyls, and a trend to a rise in 8-hydroxyguanine and protein-bound 3-nitrotyrosine. Transfection of these cell lines with DNA encoding two mutant SOD1 enzymes (G37R and G85R) associated with familial amyotrophic lateral sclerosis (FALS), produced similar, but more severe changes, i.e. even lower growth rates, higher lipid peroxidation, 3-nitrotyrosine and protein carbonyl levels, decreased GSH levels, raised GSSG levels and higher glutathione peroxidase activities. Since G85R has little SOD activity, these changes cannot be related to increased O(2)(-) scavenging. In no case was SOD2 (mitochondrial Mn-SOD) level altered. Our cellular systems reproduce many of the biochemical changes observed in patients with DS or ALS, and in transgenic mice overexpressing mutant SOD1. They also show the potentially deleterious effects of SOD1 overexpression on cellular proliferation, which may be relevant to abnormal development in DS.

    Topics: Aldehydes; Amyotrophic Lateral Sclerosis; Antioxidants; Cell Division; Cell Line; Cell Survival; Down Syndrome; Gene Expression; Glutathione; Glutathione Disulfide; Guanine; Humans; Ketones; Lipid Peroxidation; Mutation; Neuroblastoma; Oxidative Stress; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Transfection; Tyrosine

2001