8-hydroxy-2--deoxyguanosine and Ventricular-Dysfunction--Left

8-hydroxy-2--deoxyguanosine has been researched along with Ventricular-Dysfunction--Left* in 2 studies

Other Studies

2 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Ventricular-Dysfunction--Left

ArticleYear
G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress.
    Translational research : the journal of laboratory and clinical medicine, 2018, Volume: 199

    Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aldehydes; Animals; Antioxidants; Collagen; Deoxyguanosine; Female; Gene Expression; Glutathione; Heart Ventricles; Mice; Mice, Knockout; Myocardium; Organ Size; Organophosphorus Compounds; Oxidative Stress; Reactive Oxygen Species; Receptors, Estrogen; Receptors, G-Protein-Coupled; Ubiquinone; Ventricular Dysfunction, Left; Ventricular Remodeling

2018
Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats.
    Experimental biology and medicine (Maywood, N.J.), 2009, Volume: 234, Issue:10

    Protective effect of hydrogen (H(2)) gas on cardiac ischemia-reperfusion (I/R) injury has been demonstrated previously. This study was designed to test the hypothesis that hydrogen-rich saline (saline saturated with molecular hydrogen), which is easy to use, induces cardioprotection against ischemia (30 min) and reperfusion (24 h) injury in rats. Adult male Sprague-Dawley rats underwent 30-min occlusion of the left anterior descending (LAD) coronary artery and 24-h reperfusion. Intraperitoneal injection of hydrogen-rich saline before reperfusion significantly decreased plasma and myocardium malondialdehyde (MDA) concentration, decreased cardiac cell apoptosis, and myocardial 8-hydroxydeoxyguanosine (8-OHdG) in area at risk zones (AAR), suppressed the activity of caspase-3, and reduced infarct size. The heart function parameters including left ventricular systolic pressure (LVSP), left ventricular diastolic pressure (LVDP), +(dP/dt)(max) and -(dP/dt)(max) were also significantly improved 24 h after reperfusion. It is concluded that hydrogen-rich saline is a novel, simple, safe, and effective method to attenuate myocardial I/R injury.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Apoptosis; Blood Pressure; Cardiotonic Agents; Caspase 3; Deoxyguanosine; Hydrogen; Male; Malondialdehyde; Myocardial Reperfusion Injury; Myocardium; Random Allocation; Rats; Rats, Sprague-Dawley; Sodium Chloride; Ventricular Dysfunction, Left

2009