8-hydroxy-2--deoxyguanosine has been researched along with Sleep-Apnea-Syndromes* in 3 studies
3 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Sleep-Apnea-Syndromes
Article | Year |
---|---|
Exogenous erythropoietin administration attenuates intermittent hypoxia-induced cognitive deficits in a murine model of sleep apnea.
In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Such findings are markedly attenuated in rodents exposed to sustained hypoxia 9SH) of similar magnitude. The hypoxia-sensitive gene erythropoietin (EPO) has emerged as a major endogenous neuroprotectant, and could be involved in IH-induced neuronal dysfunction.. IH induced only transiently increased expression of EPO mRNA in hippocampus, which was continued in (SH)-exposed mice. IH, but not SH, adversely affected two forms of spatial learning in the water maze, and increased markers of oxidative stress. However, on a standard place training task, mice treated with exogenously administered EPO displayed normal learning, and were protected from the spatial learning deficits observed in vehicle-treated (C) littermates exposed to IH. Moreover, anxiety levels were increased in IH as compared to normoxia, while no changes in anxiety emerged in EPO-treated mice. Additionally, C mice, but not EPO-treated IH-exposed mice had significantly elevated levels of NADPH oxidase expression, as well as increased MDA and 8-OHDG levels in cortical and hippocampal lysates.. The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by imbalances between EPO expression and increased NADPH oxidase activity, and thus pharmacological agents targeting EPO expression in CNS may provide a therapeutic strategy in sleep-disordered breathing. Topics: 8-Hydroxy-2'-Deoxyguanosine; Analysis of Variance; Animals; Cells, Cultured; Cerebral Cortex; Cognition Disorders; Deoxyguanosine; Disease Models, Animal; Embryo, Mammalian; Erythropoietin; Escape Reaction; Gene Expression Regulation; Humans; Hypoxia; Injections, Intraperitoneal; Lipid Peroxidation; Male; Malondialdehyde; Maze Learning; Memory; Mice; Mice, Inbred C57BL; NADPH Oxidases; Neurons; Phosphopyruvate Hydratase; Sleep Apnea Syndromes; Swimming; Time Factors | 2012 |
Adverse cognitive effects of high-fat diet in a murine model of sleep apnea are mediated by NADPH oxidase activity.
Intermittent hypoxia (IH) during sleep, such as occurs in sleep apnea (SA), induces increased NADPH oxidase activation and deficits in hippocampal learning and memory. Similar to IH, high fat-refined carbohydrate diet (HFD), a frequent occurrence in patients with SA, can also induce similar oxidative stress and cognitive deficits under normoxic conditions, suggesting that excessive NADPH oxidase activity may underlie CNS dysfunction in both conditions. The effect of HFD and IH during the light period on two forms of spatial learning in the water maze as well as on markers of oxidative stress was assessed in male mice lacking NADPH oxidase activity (gp91phox⁻/Y) and wild-type littermates fed on HFD. On a standard place training task, gp91phox⁻/Y displayed normal learning, and was protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to HFD and IH as compared to controls, while no changes emerged in gp91phox⁻/Y mice. Additionally, wild-type mice, but not gp91phox⁻/Y mice, had significantly elevated levels of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampal lysates following IH-HFD exposures. The cognitive deficits of obesity and westernized diets and those of sleep disorders that are characterized by IH during sleep are both mediated, at least in part, by excessive NADPH oxidase activity. Topics: 8-Hydroxy-2'-Deoxyguanosine; Analysis of Variance; Animals; Cognition Disorders; Deoxyguanosine; Diet, High-Fat; Disease Models, Animal; Male; Malondialdehyde; Maze Learning; Memory; Mice; Mice, Inbred C57BL; Mice, Transgenic; Multivariate Analysis; NADPH Oxidases; Oxidative Stress; Reaction Time; Receptors, Immunologic; Sleep Apnea Syndromes; Space Perception; Swimming | 2012 |
Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea.
In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction.. The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox(_/Y)) and wild-type littermates. On a standard place training task, gp91phox(_/Y) displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox(_/Y) mice. Additionally, wild-type mice, but not gp91phox(_/Y) mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures.. The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide a therapeutic strategy in sleep-disordered breathing. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Cognition Disorders; Deoxyguanosine; Disease Models, Animal; Hypoxia; Lipid Peroxidation; Male; Maze Learning; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; NADPH Oxidase 2; NADPH Oxidases; Sleep Apnea Syndromes; Swimming | 2011 |