8-hydroxy-2--deoxyguanosine and Neuralgia

8-hydroxy-2--deoxyguanosine has been researched along with Neuralgia* in 3 studies

Other Studies

3 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Neuralgia

ArticleYear
Evaluated periodontal tissues and oxidative stress in rats with neuropathic pain-like behavior.
    Molecular biology reports, 2023, Volume: 50, Issue:11

    Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investigate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with paclitaxel-induced neuropathic pain-like behavior (NPLB).. Totally 16 male Sprague Dawley rats were used: control (n = 8) and paclitaxel-induced pain (PTX) (n = 8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immunohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p = 0.0002) and TRPA1 (p = 0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative stress and periodontal destruction.. Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering from orofacial pain.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Alveolar Bone Loss; Animals; Antioxidants; Humans; Male; NAV1.7 Voltage-Gated Sodium Channel; Neuralgia; Oxidative Stress; Paclitaxel; Periodontal Ligament; Rats; Rats, Sprague-Dawley; Superoxide Dismutase

2023
Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG).
    Brain research bulletin, 2015, Volume: 110

    Spinal cord neurons located in laminae I-III respond to nociceptive stimuli and participate in the transmission of painful information to the brain. In the present study we evaluated if nociceptive laminae I-III neurons are affected by oxidative stress damage in a model of diabetic neuropathic pain (DNP), the streptozotocin-induced diabetic rat (STZ rat). Additionally, we evaluated the effects of a preventive antioxidant treatment with epigallocatechin-gallate (EGCG) in nociceptive neuronal activation and behavioural signs of DNP. Three days after diabetes induction, a treatment protocol of STZ rats with an aqueous solution of EGCG in the drinking water was initiated. Ten weeks after the onset of treatment, the spinal cords were immunoreacted against validated markers of oxidative stress damage (8-hydroxy-2'-deoxyguanosine; 8-OHdG) and of nociceptive neuronal activation (Fos). Mechanical hypersensitivity was assessed before and after EGCG treatment. Untreated STZ rats presented increased levels of 8-OHdG immunoreaction, higher numbers of Fos-immunoreacted neurons and high levels of co-localization of 8-OHdG and Fos in laminae I-III. Treatment with EGCG normalized the increase of the above mentioned parameters and ameliorated mechanical hypersensitivity. The present study shows that nociceptive neurons in spinal cord laminae I-III exhibit oxidative stress damage during diabetic neuropathy, which probably affects ascending pain transmission during DNP. The neurobiological mechanisms and translational perspectives of the beneficial effects of a preventive and sustained EGCG treatment in DNP need to be evaluated in the future.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Catechin; Deoxyguanosine; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Hyperalgesia; Immunohistochemistry; Male; Neuralgia; Neuroprotective Agents; Nociceptors; Oxidative Stress; Proto-Oncogene Proteins c-fos; Rats, Wistar; Spinal Cord; Touch

2015
Molecular hydrogen attenuates neuropathic pain in mice.
    PloS one, 2014, Volume: 9, Issue:6

    Neuropathic pain remains intractable and the development of new therapeutic strategies are urgently required. Accumulating evidence indicates that overproduction of oxidative stress is a key event in the pathogenesis of neuropathic pain. However, repeated intra-peritoneal or intrathecal injections of antioxidants are unsuitable for continuous use in therapy. Here we show a novel therapeutic method against neuropathic pain: drinking water containing molecular hydrogen (H2) as antioxidant. The effect of hydrogen on neuropathic pain was investigated using a partial sciatic nerve ligation model in mice. As indicators of neuropathic pain, temporal aspects of mechanical allodynia and thermal hyperalgesia were analysed for 3 weeks after ligation. Mechanical allodynia and thermal hyperalgesia were measured using the von Frey test and the plantar test, respectively. When mice were allowed to drink water containing hydrogen at a saturated level ad libitum after ligation, both allodynia and hyperalgesia were alleviated. These symptoms were also alleviated when hydrogen was administered only for the induction phase (from day 0 to 4 after ligation). When hydrogen was administered only for the maintenance phase (from day 4 to 21 after ligation), hyperalgesia but not allodynia was alleviated. Immunohistochemical staining for the oxidative stress marker, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine, showed that hydrogen administration suppressed oxidative stress induced by ligation in the spinal cord and the dorsal root ganglion. In conclusion, oral administration of hydrogen water may be useful for alleviating neuropathic pain in a clinical setting.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aldehydes; Analgesics; Animals; Antioxidants; Deoxyguanosine; Drinking Water; Ganglia, Spinal; Hydrogen; Hyperalgesia; Mice; Mice, Inbred C57BL; Neuralgia; Oxidative Stress; Pain Measurement; Peripheral Nerve Injuries; Sciatic Nerve; Spinal Cord

2014