8-hydroxy-2--deoxyguanosine and Hypertension--Pulmonary

8-hydroxy-2--deoxyguanosine has been researched along with Hypertension--Pulmonary* in 2 studies

Other Studies

2 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Hypertension--Pulmonary

ArticleYear
Hydroxysafflor yellow A improves established monocrotaline-induced pulmonary arterial hypertension in rats.
    The Journal of international medical research, 2016, Volume: 44, Issue:3

    To evaluate the beneficial effects of hydroxysafflor yellow A (HSYA) on monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats, and to investigate the main pathophysiological mechanism of HSYA in preventing development of MCT-induced PAH.. Four groups (control, control with HSYA treatment, MCT-exposed, and MCT-exposed with HSYA treatment) were evaluated at day 28 following MCT exposure. Haemodynamic measurements, right ventricular hypertrophy, morphometry, inflammatory cytokines and oxidant expression were assessed.. HSYA significantly reduced haemodynamic changes, right ventricular hypertrophy and morphometric changes induced by exposure to MCT. HYSA also suppressed MCT-induced inflammation and oxidative stress in rat pulmonary tissue.. Experimental MCT-induced PAH may be reduced by HSYA treatment, and the mechanism may involve suppression of inflammation and oxidative stress.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Chalcone; Deoxyguanosine; Gene Expression Regulation; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Inflammation; Male; Malondialdehyde; Monocrotaline; Oxidative Stress; Quinones; Rats, Wistar; RNA, Messenger; Superoxide Dismutase; Vascular Remodeling

2016
Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model.
    Respiratory research, 2011, Mar-04, Volume: 12

    Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.. In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administered intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.. Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.. These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Anti-Inflammatory Agents; Antihypertensive Agents; Antioxidants; Biomarkers; Blood Pressure; Deoxyguanosine; Enzyme-Linked Immunosorbent Assay; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Inflammation Mediators; Interleukin-6; Male; Malondialdehyde; Monocrotaline; Rats; Rats, Sprague-Dawley; Sodium Chloride; Superoxide Dismutase; Time Factors; Tumor Necrosis Factor-alpha

2011