8-hydroxy-2--deoxyguanosine and Glucose-Intolerance

8-hydroxy-2--deoxyguanosine has been researched along with Glucose-Intolerance* in 5 studies

Other Studies

5 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Glucose-Intolerance

ArticleYear
Influence of diet on leukocyte telomere length, markers of inflammation and oxidative stress in individuals with varied glucose tolerance: a Chinese population study.
    Nutrition journal, 2016, Apr-12, Volume: 15

    To explore influence of carbohydrates/fat proportions, dietary ingredients on telomere length shortening, oxidative stress and inflammation in a Chinese population with different glucose tolerance status.. Five hundred and fifty-six Chinese subjects without diabetes history underwent a 75 g, 2 h Oral Glucose Tolerance Test (OGTT). Subjects with diabetes (n = 159), pre-diabetes (n = 197), and normal glucose tolerance (n = 200) were screened. Dietary intakes were evaluated using a semi-quantitative food frequency questionnaire (FFQ). Peripheral blood leukocyte telomere length (LTL) was assessed using a real-time PCR assay. Blood lipid profile, levels of the oxidative stress indicators superoxide dismutase (SOD), glutathione reductase (GR), 8-oxo-2'-deoxyguanosine (8-oxo-dG) and inflammation indicators tumor necrosis factor (TNF-ɑ), interleukine-6 (IL-6) were measured. Levels of HbA1c, plasma glucose, insulin, and C peptide were also determined. Measurements were taken at 0 min, 30 min, 60 min, and 120 min after 75 g OGTT. Insulin sensitivity was evaluated by HOMA-IR. Basal insulin secretion index (HOMA-β), early phase disposition index (DI30) and total phase disposition index (DI120) indicate insulin levels at different phases of insulin secretion.. In patients with newly diagnosed diabetes, LTL adjusted by age was longer in HbA1c < 7 % group (log (LTL):1.93 ± 0.25) than in HbA1c ≥ 7 % group (log (LTL):1.82 ± 0.29). LTL was not associated with daily energy intake, diet fat, carbohydrates and protein proportions. Multiple linear regression analysis indicated that legumes, nuts, fish and seaweeds were protective factors for LTL shortening, and sweetened carbonated beverage was a risk factor for LTL shortening ( legumes: β = 0.105, p = 0.018; nuts: β = 0.110, p = 0.011; fish: β = 0.118, p = 0.007; seaweeds: β = 0.116, p = 0.009; sweetened carbonated beverage: β = -0.120, p = 0.004 ). Daily energy intake was positively associated with TNF-ɑ, IL-6 (TNF-ɑ: r = 0.125, p = 0.006;IL-6: r = 0.092, p =0.04). Fat, carbohydrate proportions were positively associated with TNF-ɑ (fat: r = 0.119, p = 0.008 ; carbohydrate: r = 0.094, p = 0.043). Seaweeds and dairy intake were negatively associated with 8-oxo-dG (seaweed: r = -0.496, p = 0.001;dairy: r = -0.246, p = 0.046 ), vegetables and fruits were positively associated with GR ( vegetables: r = 0.101, p = 0.034;fruits: r = 0.125, p = 0.045). Cereal, meat were positively associated with TNF-ɑ ( cereal: r = 0.091, p = 0.048 ; meat: r = 0.405, p = 0.009).. Diabetes patients with better plasma glucose (HbA1c < 7 %) had longer LTL, LTL could reflect plasma glucose status in diabetes patients. LTL were probably not influenced by diet carbohydrates/fat proportions but was associated with diet ingredients. Diet ingredients significantly impacted on markers of inflammation and oxidative stress, which probably had an effect on LTL.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Asian People; Biomarkers; Blood Glucose; China; Cross-Sectional Studies; Deoxyguanosine; Diet; Female; Glucose Intolerance; Glutathione Reductase; Humans; Inflammation; Insulin; Insulin Resistance; Interleukin-6; Leukocytes; Male; Middle Aged; Nutrition Surveys; Oxidative Stress; Superoxide Dismutase; Telomere; Tumor Necrosis Factor-alpha

2016
The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats.
    PloS one, 2014, Volume: 9, Issue:6

    Lithospermic acid B (LAB), an active component isolated from Salvia miltiorrhiza radix, has been reported to have antioxidant effects. We examined the effects of LAB on the prevention of diabetic retinopathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes.. LAB (10 or 20 mg/kg) or normal saline were given orally once daily to 24-week-old male OLETF rats for 52 weeks. At the end of treatment, fundoscopic findings, vascular endothelial growth factor (VEGF) expression in the eyeball, VEGF levels in the ocular fluid, and any structural abnormalities in the retina were assessed. Glucose metabolism, serum levels of high-sensitivity C-reactive protein (hsCRP), monocyte chemotactic protein-1 (MCP1), and tumor necrosis factor-alpha (TNFα) and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were also measured. Treatment with LAB prevented vascular leakage and basement membrane thickening in retinal capillaries in a dose-dependent manner. Insulin resistance and glucose intolerance were significantly improved by LAB treatment. The levels of serum hsCRP, MCP1, TNFα, and urinary 8-OHdG were lower in the LAB-treated OLETF rats than in the controls.. Treatment with LAB had a preventive effect on the development of diabetic retinopathy in this animal model, probably because of its antioxidative effects and anti-inflammatory effects.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Benzofurans; C-Reactive Protein; Chemokine CCL2; Deoxyguanosine; Depsides; Diabetic Retinopathy; Glucose; Glucose Intolerance; Insulin Resistance; Male; Obesity; Rats; Rats, Long-Evans; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A

2014
Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats.
    European journal of pharmacology, 2012, Sep-15, Volume: 691, Issue:1-3

    Reduced β cell mass is a characteristic feature of type 2 diabetes and incretin therapy is expected to prevent this condition. However, it is unknown whether dipeptidyl peptidase-4 inhibitors influence β and α cell mass in animal models of diabetes that can be translated to humans. Therefore, we examined the long-term effects of treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet morphology in Goto-Kakizaki (GK) rats, a spontaneous, non-obese model of type 2 diabetes, and explored the underlying mechanisms. Four-week-old GK rats were orally administered with vildagliptin (15 mg/kg) twice daily for 18 weeks. Glucose tolerance was monitored during the study. After 18 weeks, β and α cell morphology and the expression of molecules involved in cell proliferation and cell death were examined by immunohistochemistry and morphometric analysis. We found that vildagliptin improved glucose tolerance and insulin secretion, and suppressed hyperglucagonemia by increasing plasma active glucagon-like peptide-1 concentrations. β cell mass was reduced in GK rats to 40% of that in Wistar rats, but was restored to 80% by vildagliptin. Vildagliptin enhanced β and α cell proliferation, and increased the number of small neogenetic islets. Vildagliptin also reduced the number of 8-hydroxy-2'-deoxyguanosine-positive cells and forkhead box protein O1 expression, inhibited macrophage infiltration, and enhanced S6 ribosomal protein, molecule of target of rapamycin, and pancreatic duodenal homeobox 1 expression. These results indicate that starting vildagliptin treatment from an early age improved glucose tolerance and preserved islet β cell mass in GK rats by facilitating the proliferation of islet endocrine cells.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Adamantane; Animals; Apoptosis; Cell Proliferation; Deoxyguanosine; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Eating; Glucagon; Glucagon-Like Peptide 1; Glucose Intolerance; Insulin; Insulin Secretion; Insulin-Secreting Cells; Male; Nitriles; Pyrrolidines; Rats; Time Factors; Vildagliptin

2012
Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation.
    Endocrine, 2010, Volume: 37, Issue:1

    The effect of glucose excursions on oxidative stress is an important topic in diabetes research. We investigated this relationship by analyzing markers of oxidative stress and glycemic data from a continuous glucose monitoring system (CGMS) in 30 individuals with normal glucose regulation (NGR), 27 subjects with impaired glucose regulation (IGR), and 27 patients with newly diagnosed type 2 diabetes (T2DM). We compared the mean amplitude of glycemic excursion (MAGE), mean postprandial glucose excursion (MPPGE), and mean postprandial incremental area under the curve (IAUC) with plasma levels of oxidative stress markers 8-iso-PGF2α, 8-OH-dG, and protein carbonyl content in the study subjects. Patients with T2DM or IGR had significantly higher glucose excursions and plasma levels of oxidative stress markers compared to normal controls (P < 0.01 or 0.05). Multiple linear regression analyses showed significant relationships between MAGE and plasma 8-iso-PGF2α, and between MPPGE and plasma 8-OH-dG in patients with IGR or T2DM (P < 0.01 or 0.05). Furthermore, 2h-postprandial glucose level and IAUC were related to plasma protein carbonyl content in the study cohort including T2DM and IGR (P < 0.01). We demonstrate that glucose excursions in subjects with IGR and T2DM trigger the activation of oxidative stress.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Adult; Aged; Biomarkers; Blood Glucose; Cohort Studies; Deoxyguanosine; Diabetes Complications; Diabetes Mellitus, Type 2; Dinoprost; Female; Glucose Intolerance; Humans; Hyperglycemia; Hypoglycemia; Male; Middle Aged; Monitoring, Ambulatory; Oxidative Stress; Postprandial Period; Protein Carbonylation

2010
Effects of pyridoxamine (K-163) on glucose intolerance and obesity in high-fat diet C57BL/6J mice.
    Metabolism: clinical and experimental, 2009, Volume: 58, Issue:7

    Advanced glycation end products (AGEs) contribute to the pathogenesis of diabetes-associated complications. Previously, we reported the possible effect of pyridoxamine (K-163), an AGE inhibitor, on improvement of glucose intolerance in type 2 diabetes mellitus KK-A(y)/Ta mice. Recently, AGEs and oxidative stress have been shown to induce insulin resistance. The objective of the present study is to examine the effect of pyridoxamine on glucose intolerance and oxidative stress. C57BL/6J mice were divided into 3 groups as follows: low-fat diet, high-fat diet, and high-fat diet with pyridoxamine treatment. Body and adipose tissue weight, serum insulin, hydrogen peroxide, malondialdehyde and AGE, and urinary 8-hydroxy-2'-deoxyguanosine levels were measured. Nicotinamide adenine dinucleotide phosphate subunits, antioxidant enzymes, and adipocytokine messenger RNA expressions in the adipose tissues were evaluated. Akt/protein kinase B activity and glucose transporter 4 translocation in skeletal muscle were also evaluated. Body and adipose tissue weights of the pyridoxamine treatment group were significantly decreased compared with those of the high-fat diet group. Pyridoxamine attenuated serum hydrogen peroxide, malondialdehyde and AGE, and urinary 8-hydroxy-2'-deoxyguanosine and nicotinamide adenine dinucleotide phosphate oxidase expression; increased antioxidant enzyme expression; and improved dysregulation of adipocytokines in adipose tissues. Pyridoxamine improved blood glucose levels after glucose injection and fasting hyperinsulinemia. Suppressed Akt/protein kinase B activity and glucose transporter 4 translocation in skeletal muscle in high-fat diet mice were improved by pyridoxamine treatment. It appears that the antioxidative effect of pyridoxamine is associated with improvement of glucose intolerance and obesity in C57BL/6J mice fed a high-fat diet. We assume that pyridoxamine may be useful in the treatment of the obesity-associated metabolic syndrome.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Adipokines; Adipose Tissue; Animals; Antioxidants; Cholesterol; Deoxyguanosine; Dietary Fats; Glucose Intolerance; Glycation End Products, Advanced; Hydrogen Peroxide; Immunohistochemistry; Malondialdehyde; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NADPH Oxidases; Obesity; Pyridoxamine; Random Allocation; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Superoxide Dismutase; Triglycerides

2009