8-hydroxy-2--deoxyguanosine has been researched along with Cardiomegaly* in 6 studies
6 other study(ies) available for 8-hydroxy-2--deoxyguanosine and Cardiomegaly
Article | Year |
---|---|
The 8-oxo-deoxyguanosine glycosylase increases its migration to mitochondria in compensated cardiac hypertrophy.
Cardiac hypertrophy is a compensatory mechanism maladapted because it presents an increase in the oxidative stress which could be associated with the development of the heart failure. A mechanism proposed is by mitochondrial DNA (mtDNA) oxidation, which evolved to a vicious cycle because of the synthesis of proteins encoded in the genome is committed. Therefore, the aim of the present work was to evaluate the mtDNA damage and enzyme repairing the 8-oxo-deoxyguanosine glycosylase mitochondrial isoform 1-2a (OGG1-2a) in the early stage of compensated cardiac hypertrophy induced by abdominal aortic constriction (AAC). Results showed that after 6 weeks of AAC, hearts presented a compensated hypertrophy (22%), with an increase in the cell volume (35%), mitochondrial mass (12%), and mitochondrial membrane potential (94%). However, the increase of oxidative stress did not affect mtDNA most probably because OGG1-2a was found to increase 3.2 times in the mitochondrial fraction. Besides, mitochondrial function was not altered by the cardiac hypertrophy condition but in vitro mitochondria from AAC heart showed an increased sensibility to stress induced by the high Ca Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Cardiomegaly; Deoxyguanosine; Disease Models, Animal; DNA Damage; DNA Glycosylases; DNA, Mitochondrial; Heart Ventricles; Humans; Male; Membrane Potential, Mitochondrial; Mitochondria; Myocytes, Cardiac; Oxidation-Reduction; Oxidative Stress; Protein Isoforms; Protein Transport; Rats, Wistar | 2017 |
Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice.
Doxorubicin (Doxo) is a chemotherapeutic drug widely used to treat variety of cancers. One of the most serious side effects of Doxo is its dose-dependent and delayed toxicity to the heart. Doxo is known to induce cardiac mitochondrial damage. Recently, the mitochondrial sirtuin SIRT3 has been shown to protect mitochondria from oxidative stress. Here we show that overexpression of SIRT3 protects the heart from toxicity of Doxo by preventing the drug-induced mitochondrial DNA (mtDNA) damage. Doxo treatment caused depletion of Sirt3 levels both in primary cultures of cardiomyocytes and in mouse hearts, which led to massive acetylation of mitochondrial proteins. Doxo-induced toxicity to cardiomyocytes was associated with increased reactive oxygen species (ROS) production, mitochondrial fragmentation, and cell death. Overexpression of SIRT3 helped to attenuate Doxo-induced ROS levels and cardiomyocyte death. Sirt3 knockout (Sirt3.KO) mice could not endure the full dose of Doxo treatment, developed exacerbated cardiac hypertrophy, and died during the course of treatment, whereas Sirt3 transgenic (Sirt3.tg) mice were protected against Doxo-induced cardiotoxicity. Along with Sirt3, we also observed a concomitant decrease in levels of oxoguanine-DNA glycosylase-1 (OGG1), a major DNA glycosylase that hydrolyzes oxidized-guanine (8-oxo-dG) to guanine. Depletion of OGG1 levels was associated with increased mtDNA damage. Sirt3.KO mice and Doxo-treated mice showed increased 8-oxo-dG adducts in DNA and corresponding increase in mtDNA damage, whereas, 8-oxo-dG adducts and mtDNA damage were markedly reduced in Sirt3 overexpressing transgenic mice hearts. These results thus demonstrated that Sirt3 activation protects the heart from Doxo-induced cardiotoxicity by maintaining OGG1 levels and protecting mitochondria from DNA damage. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Cardiomegaly; Cardiomyopathies; Cell Death; Cells, Cultured; Deoxyguanosine; Disease Models, Animal; DNA Adducts; DNA Damage; DNA Glycosylases; DNA, Mitochondrial; Doxorubicin; Female; Fibroblasts; Hydrolysis; Male; Mice, Knockout; Mitochondria, Heart; Myocytes, Cardiac; Oxidative Stress; Rats, Sprague-Dawley; Reactive Oxygen Species; Sirtuin 3; Sirtuins; Time Factors | 2016 |
Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study.
Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Animals; Antioxidants; Atrial Remodeling; Cardiomegaly; Cardiovascular System; Case-Control Studies; Cell Line; Deoxyguanosine; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Female; Glucagon-Like Peptide 1; Humans; Male; Mice; Middle Aged; Mitochondria; Myocytes, Cardiac; Oxidative Stress; Palmitic Acid; Pilot Projects; Retrospective Studies; Tyrosine; Ventricular Remodeling | 2015 |
Tongxinluo protects against pressure overload-induced heart failure in mice involving VEGF/Akt/eNOS pathway activation.
It has been demonstrated that Tongxinluo (TXL), a traditional Chinese medicine compound, improves ischemic heart disease in animal models via vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The present study aimed to investigate whether TXL protects against pressure overload-induced heart failure in mice and explore the possible mechanism of action.. Transverse aortic constriction (TAC) surgery was performed in mice to induce heart failure. Cardiac function was evaluated by echocardiography. Myocardial pathology was detected using hematoxylin and eosin or Masson trichrome staining. We investigated cardiomyocyte ultrastructure using transmission electron microscopy. Angiogenesis and oxidative stress levels were determined using CD31 and 8-hydroxydeoxyguanosine immunostaining and malondialdehyde assay, respectively. Fetal gene expression was measured using real-time PCR. Protein expression of VEGF, phosphorylated (p)-VEGF receptor 2 (VEGFR2), p-phosphatidylinositol 3-kinase (PI3K), p-Akt, p-eNOS, heme oxygenase-1 (HO-1), and NADPH oxidase 4 (Nox4) were measured with western blotting. Twelve-week low- and high-dose TXL treatment following TAC improved cardiac systolic and diastolic function and ameliorated left ventricular hypertrophy, fibrosis, and myocardial ultrastructure derangement. Importantly, TXL increased myocardial capillary density significantly and attenuated oxidative stress injury in failing hearts. Moreover, TXL upregulated cardiac nitrite content and the protein expression of VEGF, p-VEGFR2, p-PI3K, p-Akt, p-eNOS, and HO-1, but decreased Nox4 expression in mouse heart following TAC.. Our findings indicate that TXL protects against pressure overload-induced heart failure in mice. Activation of the VEGF/Akt/eNOS signaling pathway might be involved in TXL improvement of the failing heart. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Capillaries; Cardiomegaly; Cardiotonic Agents; Deoxyguanosine; Drugs, Chinese Herbal; Heart Failure; Heart Function Tests; Male; Mice, Inbred C57BL; Myocardium; Nitric Oxide Synthase Type III; Oxidative Stress; Proto-Oncogene Proteins c-akt; Signal Transduction; Ultrasonography; Vascular Endothelial Growth Factor A | 2014 |
MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload.
The transcription factor MEF2 is a downstream target for several hypertrophic signalling pathways in the heart, suggesting that MEF2 may act as a valuable therapeutic target in the treatment of heart failure.. In this study, we investigated the potential benefits of overall MEF2 inhibition in a mouse model of chronic pressure overloading, by subjecting transgenic mice expressing a dominant negative form of MEF2 (DN-MEF2 Tg) in the heart, to transverse aortic constriction (TAC). Histological analysis revealed no major differences in cardiac remodelling between DN-MEF2 Tg and control mice after TAC. Surprisingly, echocardiographic analysis revealed that DN-MEF2 Tg mice had a decrease in cardiac function compared with control animals. Analysis of the mitochondrial respiratory chain showed that DN-MEF2 Tg mice displayed lower expression of NADH dehydrogenase subunit 6 (ND6), part of mitochondrial Complex I. The reduced expression of ND6 in DN-MEF2 Tg mice after pressure overload correlated with an increase in cell death secondary to overproduction of reactive oxygen species (ROS).. Our data suggest that MEF2 transcriptional activity is required for mitochondrial function and its inhibition predisposes the heart to impaired mitochondrial function, overproduction of ROS, enhanced cell death, and cardiac dysfunction, following pressure overload. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Apoptosis; Cardiomegaly; Deoxyguanosine; Disease Models, Animal; Echocardiography; Gene Expression; Heart Failure; Integrases; MEF2 Transcription Factors; Mice; Mice, Transgenic; Mitochondria, Heart; Myocytes, Cardiac; Myogenic Regulatory Factors; NADH Dehydrogenase; Transcription, Genetic; Treatment Outcome; Ventricular Remodeling | 2010 |
Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice.
Vascular endothelial growth factor (VEGF), which is associated with the stimulation of angiogenesis and collateral vessel synthase, is one of the crucial factors involved in cardiac remodeling in type 2 diabetes.. We investigated VEGF inhibition by dRK6 on the heart in an animal model of type 2 diabetes. Male db/db and db/m mice either were treated with dRK6 starting at 7 weeks of age for 12 weeks (db/db-dRK6 and db/m-dRK6) or were untreated.. Cardiac dysfunction and hypertrophy were noted by echocardiogram and molecular markers in the db/db-dRK6 mice. The presence of diabetes significantly suppressed the expression of VEGF receptor (VEGFR)-1 and VEGFR-2, phospho-Akt, and phospho-endothelial nitric oxide synthase (eNOS) in the heart. In db/db-dRK6 mice, dRK6 completely inhibited VEGFR-2, phospho-Akt, and phospho-eNOS expression, whereas no effect on VEGFR-1 was observed. Cardiac fibrosis, microvascular scarcity associated with an increase in apoptotic endothelial cells, and inflammation were prominent, as well as increase in antiangiogenic growth factors. Cardiac 8-hydroxy-deoxyguanine and hypoxia-inducible factor-1alpha expression were significantly increased. No such changes were found in the other groups, including the db/m-dRK6 mice. The number of apoptotic human umbilical vein endothelial cells was increased by dRK6 in a dose-dependent manner only at high glucose concentrations, and this was associated with a decrease in phospho-Akt and phospho-eNOS related to oxidative stress.. Our results demonstrated that systemic blockade of VEGF by dRK6 had deleterious effects on the heart in an animal model of type 2 diabetes; dRK6 induced downregulation of the VEGFR-2 and Akt-eNOS axis and enhancement of oxidative stress. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Cardiomegaly; Deoxyguanosine; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Echocardiography; Endothelium, Vascular; Fibrosis; Heart Diseases; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Male; Mice; Mice, Inbred Strains; Nitric Oxide Synthase Type III; Oligopeptides; Proto-Oncogene Proteins c-akt; Thrombospondin 1; Vascular Endothelial Growth Factor A | 2009 |