8-epi-prostaglandin-f2alpha and Hypertrophy--Right-Ventricular

8-epi-prostaglandin-f2alpha has been researched along with Hypertrophy--Right-Ventricular* in 3 studies

Other Studies

3 other study(ies) available for 8-epi-prostaglandin-f2alpha and Hypertrophy--Right-Ventricular

ArticleYear
Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats.
    American journal of physiology. Lung cellular and molecular physiology, 2008, Volume: 294, Issue:2

    Xanthine oxidase (XO)-derived reactive oxygen species (ROS) formation contributes to experimental chronic hypoxic pulmonary hypertension in adults, but its role in neonatal pulmonary hypertension has received little attention. In rats chronically exposed to hypoxia (13% O(2)) for 14 days from birth, we examined the effects of ROS scavengers (U74389G 10 mg.kg(-1).day(-1) or Tempol 100 mg.kg(-1).day(-1) ip) or a XO inhibitor, Allopurinol (50 mg.kg(-1).day(-1) ip). Both ROS scavengers limited oxidative stress in the lung and attenuated hypoxia-induced vascular remodeling, confirming a critical role for ROS in this model. However, both interventions also significantly inhibited somatic growth and normal cellular proliferation in distal air spaces. Hypoxia-exposed pups had evidence of increased serum and lung XO activity, increased vascular XO-derived superoxide production, and vascular nitrotyrosine formation. These changes were all prevented by treatment with Allopurinol, which also attenuated hypoxia-induced vascular remodeling and partially reversed inhibited endothelium-dependent arterial relaxation, without affecting normal growth and proliferation. Collectively, our findings suggest that XO-derived superoxide induces endothelial dysfunction, thus impairing pulmonary arterial relaxation, and contributes to vascular remodeling in hypoxia-exposed neonatal rats. Due to the potential for adverse effects on normal growth, targeting XO may represent a superior "antioxidant" strategy to ROS scavengers for neonates with pulmonary hypertension.

    Topics: Acetylcholine; Allopurinol; Animals; Animals, Newborn; Cell Proliferation; Chronic Disease; Cyclic N-Oxides; Dinoprost; Free Radical Scavengers; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; In Vitro Techniques; Lung; Nitric Oxide Synthase Type III; Organ Size; Oxidative Stress; Pregnatrienes; Pulmonary Artery; Rats; Reactive Oxygen Species; Spin Labels; Superoxides; Time Factors; Xanthine Oxidase

2008
Thromboxane A(2) receptors mediate pulmonary hypertension in 60% oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism.
    American journal of respiratory and critical care medicine, 2002, Jul-15, Volume: 166, Issue:2

    Endothelin-1 (ET-1) mediates the development of pulmonary hypertension (PHT) in newborn rats exposed to 60% O(2) for 14 days, a model for human chronic neonatal lung injury. ET-1 production by d-14 rat pulmonary artery smooth muscle cells in vitro was markedly increased by thromboxane (TX) A(2) receptor agonists and inhibited by a competitive antagonist. We hypothesized that stimulation of the TX A(2) receptor contributed to O(2)-mediated PHT in vivo. Newborn rat pups received daily intraperitoneal injections of L670596, a competitive TX A(2) receptor antagonist, or 5,5-dimethyl-3-(3-fluorophenyl)4-(4-methylsulfonyl)phenyl-2(5H)-furanone (DFU), a cyclooxygenase-2 inhibitor, during 14 days of 60% O(2) or air exposure. L670596, but not DFU, prevented 60% O(2)-mediated right ventricular and small pulmonary vessel smooth muscle hypertrophy. Lung ET-1 content was significantly reduced by L670596 in 60% O(2)-exposed animals. We conclude that TX A(2) receptor activation, though not by TX A(2), caused upregulation of ET-1 and PHT in this model. A likely mediator is the stable lipid peroxidation product, 8-iso-prostane, which acts as an incidental ligand of the TX A(2) receptor and is a potent inducer of ET-1 production by cultured d-14 rat pulmonary artery smooth muscle cells in vitro.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Animals, Newborn; Blotting, Western; Carbazoles; Cells, Cultured; Cyclooxygenase Inhibitors; Dinoprost; Endothelin-1; F2-Isoprostanes; Furans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Immunohistochemistry; Lung; Muscle, Smooth, Vascular; Oxygen; Prostaglandin Antagonists; Prostaglandin-Endoperoxide Synthases; Pulmonary Artery; Rats; Receptors, Thromboxane; Thromboxane B2; Up-Regulation; Vasoconstrictor Agents

2002
Gadolinium chloride inhibits pulmonary macrophage influx and prevents O(2)-induced pulmonary hypertension in the neonatal rat.
    Pediatric research, 2001, Volume: 50, Issue:2

    Newborn rats exposed to 60% O(2) for 14 d demonstrated a bronchopulmonary dysplasia-like lung morphology and pulmonary hypertension. A 21-aminosteroid antioxidant, U74389G, attenuated both pulmonary hypertension and macrophage accumulation in the O(2)-exposed lungs. To determine whether macrophage accumulation played an essential role in the development of pulmonary hypertension in this model, pups were treated with gadolinium chloride (GdCl(3)) to reduce lung macrophage content. Treatment of 60% O(2)-exposed animals with GdCl(3) prevented right ventricular hypertrophy (p < 0.05) and smooth muscle hyperplasia around pulmonary vessels, but had no effect on morphologic changes in the lung parenchyma. In addition, GdCl(3) inhibited 60% O(2)-mediated increases in endothelin-1, 8-isoprostane, and nitrotyrosine residues. Organotypic cultures of fetal rat distal lung cells were subjected to cyclical mechanical strain to assess the potential role of GdCl(3)-induced blockade of stretch-mediated cation channels in these effects. Mechanical strain caused a moderate increase of endothelin-1 (p < 0.05), which was unaffected by GdCl(3), but had no effect on 8-isoprostane or nitric oxide synthesis. A critical role for endothelin-1 in O(2)-mediated pulmonary hypertension was confirmed using the combined endothelin receptor antagonist SB217242. We concluded that pulmonary macrophage accumulation, in response to 60% O(2), mediated pulmonary hypertension through up-regulation of endothelin-1.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cell Movement; Cells, Cultured; Dinoprost; Endothelin-1; F2-Isoprostanes; Gadolinium; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Infant, Newborn; Macrophages, Alveolar; Oxygen; Rats; Rats, Sprague-Dawley; Tyrosine

2001