8-epi-prostaglandin-f2alpha and Hypertension--Pulmonary

8-epi-prostaglandin-f2alpha has been researched along with Hypertension--Pulmonary* in 8 studies

Other Studies

8 other study(ies) available for 8-epi-prostaglandin-f2alpha and Hypertension--Pulmonary

ArticleYear
CYBA and GSTP1 variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema.
    Clinical science (London, England : 1979), 2012, Volume: 122, Issue:6

    HAPE (high-altitude pulmonary oedema) is characterized by pulmonary hypertension, vasoconstriction and an imbalance in oxygen-sensing redox switches. Excess ROS (reactive oxygen species) contribute to endothelial damage under hypobaric hypoxia, hence the oxidative-stress-related genes CYBA (cytochrome b-245 α polypeptide) and GSTP1 (glutathione transferase Pi 1) are potential candidate genes for HAPE. In the present study, we investigated the polymorphisms -930A/G and H72Y (C/T) of CYBA and I105V (A/G) and A114V (C/T) of GSTP1, individually and in combination, in 150 HAPE-p (HAPE patients), 180 HAPE-r (HAPE-resistant lowland natives) and 180 HLs (healthy highland natives). 8-Iso-PGF2α (8-iso-prostaglandin F2α) levels were determined in plasma and were correlated with individual alleles, genotype, haplotype and gene-gene interactions. The relative expression of CYBA and GSTP1 were determined in peripheral blood leucocytes. The genotype distribution of -930A/G, H72Y (C/T) and I105V (A/G) differed significantly in HAPE-p compared with HAPE-r and HLs (P≤0.01). The haplotypes G-C of -930A/G and H72Y (C/T) in CYBA and G-C and G-T of I105V (A/G) and A114V (C/T) in GSTP1 were over-represented in HAPE-p; in contrast, haplotypes A-T of -930A/G and H72Y (C/T) in CYBA and A-C of I105V (A/G) and A114V (C/T) in GSTP1 were over-represented in HAPE-r and HLs. 8-Iso-PGF2α levels were significantly higher in HAPE-p and in HLs than in HAPE-r (P=2.2×10(-16) and 1.2×10(-14) respectively) and the expression of CYBA and GSTP1 varied differentially (P<0.05). Regression analysis showed that the risk alleles G, C, G and T of -930A/G, H72Y (C/T), I105V (A/G) and A114V (C/T) were associated with increased 8-iso-PGF2α levels (P<0.05). Interaction between the two genes revealed over-representation of most of the risk-allele-associated genotype combinations in HAPE-p and protective-allele-associated genotype combinations in HLs. In conclusion, the risk alleles of CYBA and GSTP1, their haplotypes and gene-gene interactions are associated with imbalanced oxidative stress and, thereby, with high-altitude adaptation and mal-adaptation.

    Topics: Altitude Sickness; Dinoprost; Epistasis, Genetic; Gene Frequency; Genotype; Glutathione S-Transferase pi; Haplotypes; Humans; Hypertension, Pulmonary; Hypoxia; Linkage Disequilibrium; NADPH Oxidases; Oxidative Stress; Polymorphism, Single Nucleotide; Regression Analysis

2012
Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease.
    American journal of respiratory and critical care medicine, 2012, Jan-01, Volume: 185, Issue:1

    Inflammation and oxidative stress are linked to the deleterious effects of cigarette smoke in producing chronic obstructive pulmonary disease (COPD). Myeloperoxidase (MPO), a neutrophil and macrophage product, is important in bacterial killing, but also drives inflammatory reactions and tissue oxidation.. To determine the role of MPO in COPD.. We treated guinea pigs with a 2-thioxanthine MPO inhibitor, AZ1, in a 6-month cigarette smoke exposure model, with one group receiving compound from Smoking Day 1 and another group treated after 3 months of smoke exposure.. At 6 months both treatments abolished smoke-induced increases in lavage inflammatory cells, largely ameliorated physiological changes, and prevented or stopped progression of morphologic emphysema and small airway remodeling. Cigarette smoke caused a marked increase in immunohistochemical staining for the myeloperoxidase-generated protein oxidation marker dityrosine, and this effect was considerably decreased with both treatment arms. Serum 8-isoprostane, another marker of oxidative stress, showed similar trends. Both treatments also prevented muscularization of the small intrapulmonary arteries, but only partially ameliorated smoke-induced pulmonary hypertension. Acutely, AZ1 prevented smoke-induced increases in expression of cytokine mediators and nuclear factor-κB binding.. We conclude that an MPO inhibitor is able to stop progression of emphysema and small airway remodeling and to partially protect against pulmonary hypertension, even when treatment starts relatively late in the course of long-term smoke exposure, suggesting that inhibition of MPO may be a novel and useful therapeutic treatment for COPD. Protection appears to relate to inhibition of oxidative damage and down-regulation of the smoke-induced inflammatory response.

    Topics: Airway Remodeling; Animals; Dinoprost; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Female; Guinea Pigs; Hypertension, Pulmonary; Inflammation; Lung; Oxidative Stress; Peroxidase; Pulmonary Disease, Chronic Obstructive; Purines; Smoking; Thiones; Thioxanthenes; Tyrosine

2012
Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats.
    American journal of physiology. Lung cellular and molecular physiology, 2008, Volume: 294, Issue:2

    Xanthine oxidase (XO)-derived reactive oxygen species (ROS) formation contributes to experimental chronic hypoxic pulmonary hypertension in adults, but its role in neonatal pulmonary hypertension has received little attention. In rats chronically exposed to hypoxia (13% O(2)) for 14 days from birth, we examined the effects of ROS scavengers (U74389G 10 mg.kg(-1).day(-1) or Tempol 100 mg.kg(-1).day(-1) ip) or a XO inhibitor, Allopurinol (50 mg.kg(-1).day(-1) ip). Both ROS scavengers limited oxidative stress in the lung and attenuated hypoxia-induced vascular remodeling, confirming a critical role for ROS in this model. However, both interventions also significantly inhibited somatic growth and normal cellular proliferation in distal air spaces. Hypoxia-exposed pups had evidence of increased serum and lung XO activity, increased vascular XO-derived superoxide production, and vascular nitrotyrosine formation. These changes were all prevented by treatment with Allopurinol, which also attenuated hypoxia-induced vascular remodeling and partially reversed inhibited endothelium-dependent arterial relaxation, without affecting normal growth and proliferation. Collectively, our findings suggest that XO-derived superoxide induces endothelial dysfunction, thus impairing pulmonary arterial relaxation, and contributes to vascular remodeling in hypoxia-exposed neonatal rats. Due to the potential for adverse effects on normal growth, targeting XO may represent a superior "antioxidant" strategy to ROS scavengers for neonates with pulmonary hypertension.

    Topics: Acetylcholine; Allopurinol; Animals; Animals, Newborn; Cell Proliferation; Chronic Disease; Cyclic N-Oxides; Dinoprost; Free Radical Scavengers; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; In Vitro Techniques; Lung; Nitric Oxide Synthase Type III; Organ Size; Oxidative Stress; Pregnatrienes; Pulmonary Artery; Rats; Reactive Oxygen Species; Spin Labels; Superoxides; Time Factors; Xanthine Oxidase

2008
Oxidant stress but not thromboxane decreases with epoprostenol therapy.
    Free radical biology & medicine, 2005, Mar-01, Volume: 38, Issue:5

    Epoprostenol has improved the outcome of patients with primary pulmonary hypertension (PPH); however, its mechanism of action remains poorly understood. Isoprostanes are easily measured markers of oxidant stress and can activate platelets leading to increased thromboxane A2 (TxA2) production. We hypothesized that oxidant stress is associated with increased TxA2 synthesis and that epoprostenol decreases oxidant stress and TxA2 production in patients with PPH. Morning urine samples were obtained from 19 patients with PPH. We measured urinary metabolites of the isoprostane, 8-iso-PGF2alpha (F2-IsoP-M), and of TxA2 (Tx-M) before and after treatment with epoprostenol in patients with PPH. Mean (+/-SE) levels of F2-IsoP-M were elevated at baseline in our patients, 863 +/- 97 pg/mg creatinine. During treatment with epoprostenol, values decreased to 636 +/- 77 pg/mg creatinine (P = 0.011), and there was a strong correlation between the change in F2-IsoP-M and follow-up pulmonary vascular resistance (R2 = 0.69, P < 0.001). Tx-M levels were markedly elevated at baseline and were unchanged with therapy. These results indicate that oxidant stress decreases with epoprostenol therapy and is associated with hemodynamic and clinical improvement. The failure of Tx-M to decrease with therapy suggests that epoprostenol does not exert a beneficial effect through inhibition of TxA2 production in patients with PPH.

    Topics: Adult; Antihypertensive Agents; Dinoprost; Epoprostenol; Female; Humans; Hypertension, Pulmonary; Male; Oxidative Stress; Thromboxane A2; Vascular Resistance

2005
Chronic O2 exposure in the newborn rat results in decreased pulmonary arterial nitric oxide release and altered smooth muscle response to isoprostane.
    Journal of applied physiology (Bethesda, Md. : 1985), 2004, Volume: 96, Issue:2

    Chronic oxygen exposure in the newborn rat results in lung isoprostane formation, which may contribute to the pulmonary hypertension evident in this animal model. The purpose of this study was to investigate the pulmonary arterial smooth muscle responses to 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2a)) in newborn rats exposed to 60% O2 for 14 days. Because, in the adult rat, 8-iso-PGF(2alpha) may have a relaxant effect, mediated by nitric oxide (NO), we also sought to evaluate the pulmonary arterial NO synthase (NOS) protein content and NO release in the newborn exposed to chronic hyperoxia. Compared with air-exposed control animals, 8-iso-PGF(2a) induced a significantly greater force (P < 0.01) and reduced (P < 0.01) relaxation of precontracted pulmonary arteries in the 60% O2-treated animals. These changes were reproduced in control pulmonary arteries by NOS blockade by using NG-nitro-L-arginine methyl ester. Pulmonary arterial endothelial NOS was unaltered, but the inducible NOS protein content was significantly decreased (P < 0.01) in the experimental group. Pulmonary (P < 0.05) and aortic (P < 0.01) tissue ex vivo NO accumulation was significantly reduced in the 60% O2-treated animals. We speculate that impaired pulmonary vascular tissue NO metabolism after chronic O2 exposure potentiates 8-iso-PGF(2alpha)-induced vasoconstriction in the newborn rat, thus contributing to pulmonary hypertension.

    Topics: Animals; Animals, Newborn; Chronic Disease; Dinoprost; Female; Hyperoxia; Hypertension, Pulmonary; Isoprostanes; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Synthase; Oxygen; Pregnancy; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Vasoconstrictor Agents

2004
Thromboxane A(2) receptors mediate pulmonary hypertension in 60% oxygen-exposed newborn rats by a cyclooxygenase-independent mechanism.
    American journal of respiratory and critical care medicine, 2002, Jul-15, Volume: 166, Issue:2

    Endothelin-1 (ET-1) mediates the development of pulmonary hypertension (PHT) in newborn rats exposed to 60% O(2) for 14 days, a model for human chronic neonatal lung injury. ET-1 production by d-14 rat pulmonary artery smooth muscle cells in vitro was markedly increased by thromboxane (TX) A(2) receptor agonists and inhibited by a competitive antagonist. We hypothesized that stimulation of the TX A(2) receptor contributed to O(2)-mediated PHT in vivo. Newborn rat pups received daily intraperitoneal injections of L670596, a competitive TX A(2) receptor antagonist, or 5,5-dimethyl-3-(3-fluorophenyl)4-(4-methylsulfonyl)phenyl-2(5H)-furanone (DFU), a cyclooxygenase-2 inhibitor, during 14 days of 60% O(2) or air exposure. L670596, but not DFU, prevented 60% O(2)-mediated right ventricular and small pulmonary vessel smooth muscle hypertrophy. Lung ET-1 content was significantly reduced by L670596 in 60% O(2)-exposed animals. We conclude that TX A(2) receptor activation, though not by TX A(2), caused upregulation of ET-1 and PHT in this model. A likely mediator is the stable lipid peroxidation product, 8-iso-prostane, which acts as an incidental ligand of the TX A(2) receptor and is a potent inducer of ET-1 production by cultured d-14 rat pulmonary artery smooth muscle cells in vitro.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Animals, Newborn; Blotting, Western; Carbazoles; Cells, Cultured; Cyclooxygenase Inhibitors; Dinoprost; Endothelin-1; F2-Isoprostanes; Furans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Immunohistochemistry; Lung; Muscle, Smooth, Vascular; Oxygen; Prostaglandin Antagonists; Prostaglandin-Endoperoxide Synthases; Pulmonary Artery; Rats; Receptors, Thromboxane; Thromboxane B2; Up-Regulation; Vasoconstrictor Agents

2002
Gadolinium chloride inhibits pulmonary macrophage influx and prevents O(2)-induced pulmonary hypertension in the neonatal rat.
    Pediatric research, 2001, Volume: 50, Issue:2

    Newborn rats exposed to 60% O(2) for 14 d demonstrated a bronchopulmonary dysplasia-like lung morphology and pulmonary hypertension. A 21-aminosteroid antioxidant, U74389G, attenuated both pulmonary hypertension and macrophage accumulation in the O(2)-exposed lungs. To determine whether macrophage accumulation played an essential role in the development of pulmonary hypertension in this model, pups were treated with gadolinium chloride (GdCl(3)) to reduce lung macrophage content. Treatment of 60% O(2)-exposed animals with GdCl(3) prevented right ventricular hypertrophy (p < 0.05) and smooth muscle hyperplasia around pulmonary vessels, but had no effect on morphologic changes in the lung parenchyma. In addition, GdCl(3) inhibited 60% O(2)-mediated increases in endothelin-1, 8-isoprostane, and nitrotyrosine residues. Organotypic cultures of fetal rat distal lung cells were subjected to cyclical mechanical strain to assess the potential role of GdCl(3)-induced blockade of stretch-mediated cation channels in these effects. Mechanical strain caused a moderate increase of endothelin-1 (p < 0.05), which was unaffected by GdCl(3), but had no effect on 8-isoprostane or nitric oxide synthesis. A critical role for endothelin-1 in O(2)-mediated pulmonary hypertension was confirmed using the combined endothelin receptor antagonist SB217242. We concluded that pulmonary macrophage accumulation, in response to 60% O(2), mediated pulmonary hypertension through up-regulation of endothelin-1.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cell Movement; Cells, Cultured; Dinoprost; Endothelin-1; F2-Isoprostanes; Gadolinium; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Infant, Newborn; Macrophages, Alveolar; Oxygen; Rats; Rats, Sprague-Dawley; Tyrosine

2001
Analysis of the pulmonary hypertensive effects of the isoprostane derivative, 8-iso-PGF2alpha, in the rat.
    British journal of pharmacology, 1997, Volume: 122, Issue:5

    1. We analysed the pulmonary hypertensive effects of the F2-isoprostane derivative, 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), in comparison with those of the high efficacy thromboxane A2/prostanoid (TP) receptor agonist, U-46619, in pentobarbitone-anaesthetized, open-chest rats (n=4-15 per group). 2. 8-iso-PGF2alpha produced dose-dependent increases in mean pulmonary arterial pressure, with an ED50 of 39.0 (31.4-50.6) microg kg(-1), i.v. (geometric mean with 95% confidence limits in parentheses) compared to 1.4 (1.1-2.3) microg kg(-1), i.v., for U-46619. The maximum responses evoked by U-46619 and 8-iso-PGF2alpha were not statistically significantly different (21.0+/-1.0 and 25.8+/-1.9 mmHg at 10 microg kg(-1) of U-46619 and 630 microg kg(-1) of 8-iso-PGF2alpha, respectively). 3. The TP receptor antagonist, SQ 29,548 (0.63 mg kg(-1), i.v. + 0.63 mg kg(-1) h(-1)) fully antagonised both U-46619 and 8-iso-PGF2alpha-induced pulmonary hypertensive responses. 4. Further experiments were carried out to determine whether 8-iso-PGF2alpha antagonized the pulmonary hypertensive responses evoked by U-46619, or those induced by itself, as would be predicted for a partial agonist. However, ED10 or ED25 doses of 8-iso-PGF2alpha (10 or 20 microg kg(-1), i.v.) failed to reduce the pulmonary hypertensive responses induced either by U-46619 or by itself. 5. The data suggest that in the pulmonary vascular bed of the rat, 8-iso-PGF2alpha acts as an agonist of high intrinsic activity at SQ 29,548-sensitive (probably TP) receptors.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Blood Pressure; Bridged Bicyclo Compounds, Heterocyclic; Dinoprost; Dose-Response Relationship, Drug; F2-Isoprostanes; Fatty Acids, Unsaturated; Hydrazines; Hypertension, Pulmonary; Infusions, Intravenous; Male; Rats; Rats, Sprague-Dawley; Receptors, Thromboxane; Vasoconstrictor Agents

1997