8-epi-prostaglandin-f2alpha has been researched along with Disease-Models--Animal* in 101 studies
101 other study(ies) available for 8-epi-prostaglandin-f2alpha and Disease-Models--Animal
Article | Year |
---|---|
Urinary 8-iso PGF2α and 2,3-dinor-8-iso PGF2α can be indexes of colitis-associated colorectal cancer in mice.
Early diagnosis of colorectal cancer is needed to reduce the mortal consequence by cancer. Lipid mediators play critical role in progression of colitis and colitis-associated colon cancer (CAC) and some of their metabolites are excreted in urine. Here, we attempted to find novel biomarkers in urinary lipid metabolite of a murine model of CAC. Mice were received single administration of azoxymethane (AOM) and repeated administration of dextran sulfate sodium (DSS). Lipid metabolites in their urine was measured by liquid chromatography mass spectrometry and their colon was collected to perform morphological study. AOM and DSS caused inflammation and tumor formation in mouse colon. Liquid chromatography mass spectrometry-based comprehensive analysis of lipid metabolites showed that cyclooxygenase-mediated arachidonic acid (AA) metabolites, prostaglandins, and reactive oxygen species (ROS)-mediated AA metabolites, isoprostanes, were predominantly increased in the urine of tumor-bearing mice. Among that, urinary prostaglandin (PG)E2 metabolite tetranor-PGEM and PGD2 metabolite tetranor-PGDM were significantly increased in both of urine collected at the acute phase of colitis and the carcinogenesis phase. On the other hand, two F2 isoprostanes (F2-IsoPs), 8-iso PGF2α and 2,3-dinor-8-iso PGF2α, were significantly increased only in the carcinogenesis phase. Morphological study showed that infiltrated monocytes into tumor mass strongly expressed ROS generator NADPH (p22phox). These observations suggest that urinary 8-iso PGF2α and 2,3-dinor-8-iso PGF2α can be indexes of CAC. Topics: Animals; Biomarkers; Chromatography, High Pressure Liquid; Colitis; Colitis-Associated Neoplasms; Cyclooxygenase 2; Cytochrome b Group; Dextran Sulfate; Dinoprost; Disease Models, Animal; F2-Isoprostanes; Female; Lipid Metabolism; Mass Spectrometry; Mice; Mice, Inbred C57BL; Monocytes; NADPH Oxidases; Reactive Oxygen Species | 2021 |
Ampelopsin Improves Cognitive Impairment in Alzheimer's Disease and Effects of Inflammatory Cytokines and Oxidative Stress in the Hippocampus.
Neuroinflammation and oxidative stress have significant effects on cognitive deficiency in the pathophysiological development of Alzheimer's disease (AD). In the present study, we studied the influences of Ampelopsin (AMP) on proinflammatory cytokines (PICs, IL-1β, IL-6 and TNF-α), and products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, a product of oxidative stress); and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a key biomarker of protein oxidation) in the hippocampus using a rat model of AD.. ELISA was used to examine PICs and oxidative stress production; and western blotting to examine NADPH oxidase (NOXs). The Spatial working memory tests and Morris water maze were utilized to assess cognitive functions.. We observed amplification of IL-1β, IL-6 and TNF-α as well as 8-iso PGF2α and 8-OHdG in the hippocampus of AD rats. AMP attenuated upregulation of PICs and oxidative stress production. AMP also inhibited NOX4 in the AD rat hippocampus. Notably, AMP mostly improved learning performance in AD rat and this was linked to signal pathways of PIC and oxidative stress.. AMP plays a significant role in improving the memory deficiency in AD rats via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that AMP is likely to prospect in preventing and relieving development of the cognitive dysfunctions in AD as a complementary alternative intervention. Topics: 8-Hydroxy-2'-Deoxyguanosine; Alzheimer Disease; Animals; Cognitive Dysfunction; Cytokines; Dinoprost; Disease Models, Animal; Flavonoids; Hippocampus; Inflammation; Male; Maze Learning; Memory, Short-Term; Neuroprotective Agents; Oxidative Stress; Rats | 2020 |
Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania.
The present study evaluated the effects of AR-A014418 on behavioral and oxidative stress parameters of rats submitted to the animal model of mania induced by ouabain (OUA). Wistar rats were submitted to stereotaxic surgery and received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid (aCSF), OUA, or AR-A014418. After 7 days, the animals were submitted to open-field test. After behavioral analysis, the brains were dissected in frontal cortex and hippocampus to the evaluation of oxidative stress. The OUA induced manic-like behavior in rats, which was reversed by AR-A014418 treatment. The ICV administration of OUA increases the levels of superoxide in submitochondrial particles, lipid hydroperoxide (LPH), 4-hydroxynonenal (4-HNE), 8-isoprostane, protein carbonyl, 3-nitrotyrosine, and activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) in both structures evaluated. In general, the treatment with AR-A014418 reversed these effects of OUA on the submitochondrial particles, LPH, 4-HNE, 8-isoprostane, protein carbonyl, 3-nitrotyrosine levels, and SOD activity. Furthermore, the injection of OUA decreased the catalase activity, and AR-A014418 promoted an increase in activity of this enzyme in the brain structures. These results suggest that GSK-3β inhibition can modulate manic-like behaviors. Also, it can be suggested that inhibition of GSK-3β can be effective against oxidative stress. However, more studies are needed to better elucidate these mechanisms. Graphical Abstract The effects of AR-A014418 on the behavioral and oxidative stress parameters in the animal model of mania induced by ouabain. Superoxide = superoxide production in submitochondrial particles; LPH = lipid hydroperoxide; 4-HNE = 4-hydroxynonenal; SOD = superoxide dismutase; GPx = glutathione peroxidase; GR = glutathione reductase. Topics: Aldehydes; Animals; Antioxidants; Behavior, Animal; Bipolar Disorder; Catalase; Dinoprost; Disease Models, Animal; Glutathione Peroxidase; Glycogen Synthase Kinase 3 beta; Lipid Peroxidation; Male; Motor Activity; Oxidative Stress; Protein Carbonylation; Rats, Wistar; Submitochondrial Particles; Superoxide Dismutase; Superoxides; Thiazoles; Tyrosine; Urea | 2019 |
Elevated Levels of ADMA Are Associated with Lower DDAH2 and Higher PRMT1 in LPS-Induced Endometritis Rats.
Chronic endometritis is a continuous inflammation of uterine endometrium. Recent research has shown that higher asymmetric dimethylarginine (ADMA) levels contribute to endothelial dysfunction. In the present study, we tested whether there is a correlation between endometritis and ADMA in LPS-induced endometritis rat and the mechanisms involved. Thirty-six rats were divided into two groups: blank control group and rat model of endometritis group. The entire infused uterus were removed to observe the changes of histopathology, production of myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, 8-isoprostane, and reactive oxygen species (ROS), and gene expression of dimethylarginine dimethylaminohydrolase 2 (DDAH2), protein-methyl transferase 1 (PRMT1), TNF-α, and IL-6. In endometritis rat group, characteristic histopathologic changes in uteri were observed. The uterine 8-isoprostane, ROS, MPO activity, IL-6 and TNF-α concentrations, PRMT1, IL-6, and TNF-α expressions were significantly elevated, and DDAH2 expression was notably reduced in endometritis group compared with control group. The present findings suggest that elevated levels of ADMA are associated with lower DDAH2 and higher PRMT1 in LPS-induced endometritis rat. Topics: Amidohydrolases; Animals; Arginine; Dinoprost; Disease Models, Animal; Down-Regulation; Endometriosis; Female; Interleukin-6; Lipopolysaccharides; Peroxidase; Protein-Arginine N-Methyltransferases; Rats, Wistar; Reactive Oxygen Species; Tumor Necrosis Factor-alpha; Up-Regulation; Uterus | 2018 |
Bronchiolitis obliterans murine model induced by nitric acid aerosol inhalation: An economical and reproducible model.
Bronchiolitis obliterans (BO) is a highly debilitative and fatal syndrome associated with a series of severe lower airway disorders. The pathogenesis of BO is complicated and not entirely understood. An appropriate animal model of BO may aid research into its pathogenesis. Here, we establish a mouse model of BO to provide insight into this disease.. 6-8 week old BABL/c mice were exposed to 5% nitric acid (NA) aerosol through a nebulizer for 3 hours, and controls were exposed to distilled water instead. Symptoms, airway resistance and pathological process were observed dynamically. The levels of matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), 8-isoprostane and myeloperoxidase (MPO) in lung tissue and bronchoalveolar lavage fluids (BLAF) were determined by ELISA on day 3, 7, 14, 28 and 56 after the aerosol nebulization.. Typical BO lesions were observed in NA nebulized mice characterized histologically by initial necrotizing bronchiolitis and final airway fibrosis at day 28 after the aerosol nebulization. NA nebulized mice also exhibited labored breathing and significantly increased airway resistance. Expression of MMP-2, MMP-9, TIMP-1, 8-isoprostane and MPO were significantly elevated in NA nebulized mice in different time frame.. A murine BO model was established by NA aerosol inhalation. It provides an easy, economic, and reproducible mice model for BO research. Topics: Aerosols; Animals; Bronchiolitis Obliterans; Dinoprost; Disease Models, Animal; Inhalation; Metalloendopeptidases; Mice; Mice, Inbred BALB C; Nitric Acid; Peroxidase; Reproducibility of Results; Time Factors; Tissue Inhibitor of Metalloproteinase-1 | 2018 |
Supplemental Parenteral Vitamin E Into Conventional Soybean Lipid Emulsion Does Not Prevent Parenteral Nutrition-Associated Liver Disease in Full-Term Neonatal Piglets.
Parenteral nutrition-associated liver disease (PNALD) continues to cause morbidity and mortality for neonates with intestinal failure. Lipid peroxidation is one potential etiological factor. This study was designed to test if supplementing vitamin E into conventional soy-based lipid would reduce the risk of PNALD.. Sixteen piglets, aged 2-5 days and weighing 1.8-2.5 kg, were randomized to parenteral nutrition (PN) with soy lipid (SO, n = 8) or the same lipid plus α-tocopherol, the most bioactive form of vitamin E (SO+E, n = 8). After 17 days, bile flow, liver chemistry, gene expression associated with bile acid metabolism, and bile acid composition were assessed. C-reactive protein (CRP) and oxidative stress markers, including plasma 8-isoprostane, were measured. All results were compared with a sow-reared control group (CON).. Comparing PN-treated groups, SO vs SO+E mean bile flow (5.91 vs 5.54 µL/g liver; P = .83), serum bile acid concentration (39.2 vs 26.6 µmol/L; P = .12), and total bilirubin (35.2 vs 26.9 µmol/L; P = .56) were not different. Gene expression related to bile acid metabolism and bile composition was not different between PN groups. There was no difference in CRP (41.8 vs 36.8 µg/mL; P = .22) or in plasma 8-isoprostane (27.9 vs 26.1 pg/mL; P = .77).. In term neonatal piglets, supplemental vitamin E did not prevent cholestasis. Additional vitamin E was not associated with reduced inflammation or oxidative stress. The benefit of supplementing vitamin E into conventional lipid, vs adding fish oil, to prevent early onset of PNALD requires further clarification. Topics: Alanine Transaminase; Alkaline Phosphatase; alpha-Tocopherol; Animals; Animals, Newborn; Bile Acids and Salts; Bilirubin; Biomarkers; C-Reactive Protein; Cholestasis; Dinoprost; Disease Models, Animal; Fat Emulsions, Intravenous; Female; gamma-Glutamyltransferase; Liver Diseases; Oxidative Stress; Parenteral Nutrition; Soybean Oil; Swine | 2017 |
Protective effect of propofol on noise-induced hearing loss.
Iatrogenic noise produced by mastoid or craniotomy drills may cause hearing damage, which is induced by the generation of reactive oxygen species (ROS) and the reduction of cochlear blood flow (CoBF). This study investigated whether propofol could reduce noise-induced hearing loss (NIHL) in a guinea pig model.. Sixty-four male pigmented guinea pigs were randomly and equally divided into 4 groups: control, noise, propofol and propofol+noise. Propofol was infused intravenously for 20min prior to noise exposure with a loading dose of 5mg·kg. Noise exposure caused decreases in the CoBF and DPOAE amplitudes, over-generation of 8-iso-PGF2α and the loss of OHCs. Pre-treatment with propofol significantly increased the CoBF and DPOAE amplitudes, decreased 8-iso-PGF2α and the loss of OHCs.. Propofol exerted protective effects against NIHL in this animal model by suppressing a lipid peroxidation reaction and improving CoBF. Topics: Animals; Blood Pressure; Cell Count; Cochlea; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Guinea Pigs; Hair Cells, Auditory, Outer; Hearing Loss, Noise-Induced; Infusions, Intravenous; Male; Neuroprotective Agents; Noise; Propofol; Random Allocation; Regional Blood Flow; Silver Nitrate | 2017 |
Alleviative effect of ciliary neurotrophic factor analogue on high fat-induced hepatic steatosis is partially independent of the central regulation.
Ciliary neurotrophic factor (CNTF) analogues were reported to ameliorate fatty liver in db/db or high-fat diet-fed mice. It is generally thought that CNTF exerts its actions centrally. The aim of this study was to investigate whether peripheral effects of CNTF analogues are involved in the therapeutic effect on high fat-induced hepatic steatosis. The rat model of fatty liver was induced by a high-fat diet (HFD) for 12 weeks. In the next 2 weeks, rats were fed the HFD along with subcutaneous injection of vehicle or mutant recombinant human CNTF (rhmCNTF 0.05-0.2 mg/kg per day). Steatotic HepG2 cells were induced by 50% fetal bovine serum (FBS) for 48 hours, and then treated with rhmCNTF for 24 hours. The results showed that after rhmCNTF treatment, hepatic triglyceride (TG) accumulation was attenuated both in vivo and in vitro. RhmCNTF increased protein expression of CPT-1 and PPARα, and decreased SREBP-1c, FAS and SCD-1 in steatotic HepG2 cells. But the production of nitric oxide and 8-isoPGF Topics: Animals; Cell Culture Techniques; Ciliary Neurotrophic Factor; Diet, High-Fat; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Hep G2 Cells; Humans; Injections, Subcutaneous; Male; Nitric Oxide; Non-alcoholic Fatty Liver Disease; Rats, Sprague-Dawley; Recombinant Proteins; Triglycerides | 2017 |
The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence.
Whole cell Schizochytrium sp. is a rich source of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) including docosahexaenoic acid (DHA), an important nutrient for brain health. Aged beagle dogs experienced on a visuospatial task of working memory, variable-delay delayed-non-matching-to-position were used to assess efficacy of DHA-rich microalgae based upon DHA wt% of total phospholipids and 8-iso-PGF Topics: Aging; Animals; Dietary Fats, Unsaturated; Dinoprost; Discrimination Learning; Disease Models, Animal; Docosahexaenoic Acids; Dogs; Humans; Memory, Short-Term; Phospholipids; Stramenopiles | 2017 |
The induction of lipid peroxidation during the acute oxidative stress response induced by intratracheal instillation of fine crystalline silica particles in rats.
Crystalline silica (SiO Topics: Air Pollutants; Animals; Biomarkers; Bronchoalveolar Lavage Fluid; Carcinogens, Environmental; Dinoprost; Disease Models, Animal; Fatty Acids, Unsaturated; Heme Oxygenase-1; Instillation, Drug; Kinetics; Lipid Peroxidation; Lung; Male; Oxidative Stress; Particle Size; Particulate Matter; Rats, Wistar; Respiratory Mucosa; Silicon Dioxide; Silicosis; Trachea | 2016 |
Effects of Acute Stroke Serum on Non-Ischemic Cerebral and Mesenteric Vascular Function.
We investigated the effects of circulating factors in serum obtained from patients in the acute phase of different subtypes of ischemic stroke on non-ischemic cerebral and mesenteric arteries, as a potential mechanism involved in influencing regional perfusion and thus clinical evolution. Posterior cerebral arteries (PCAs) and mesentery arteries (MAs) isolated from Wistar Kyoto rats were perfused with serum from acute stroke patients with large vessel disease without (LVD) or with hypertension (LVD + HTN), cardioembolism with hypertension (CE + HTN), or physiologic saline as controls. Myogenic activity and nitric oxide-dependent vasorelaxation were assessed after 2 h of intraluminal exposure to serum. Vascular function was differentially affected by sera. Exposure to LVD serum increased myogenic tone and produced endothelial dysfunction in both PCAs and MAs. However, CE + HTN serum increased tone and decreased smooth muscle sensitivity to NO in vessels from both vascular beds. LVD + HTN serum was associated with reduced smooth muscle sensitivity to NO in vessels from both vascular beds but increased tone only in PCAs. Inflammation and oxidative stress, determined by measurement of high sensitivity C-reactive protein, uric acid, and free 8-isoprostane, were enhanced in all the serum groups. These results demonstrate vasoactive properties of acute stroke serum related to stroke subtypes that could potentially contribute to the pathogenesis of early hemodynamic-based clinical events. Topics: Acetylcholine; Aged; Animals; C-Reactive Protein; Cerebral Arteries; Dinoprost; Disease Models, Animal; Female; Humans; Hypertension; Male; Middle Aged; Muscle, Smooth, Vascular; Nitric Oxide; Nitroprusside; Rats; Rats, Inbred WKY; Serum; Splanchnic Circulation; Stroke; Uric Acid; Vasodilator Agents | 2016 |
Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease.
Meta-analysis has shown that smokers have significantly increased risks for Alzheimer's disease (AD), and neuroimaging studies showed that smoking alters white matter (WM) structural integrity.. Herein, we characterize the effects of cigarette smoke (CS) exposures and withdrawal on WM myelin lipid composition using matrix assisted laser desorption and ionization-imaging mass spectrometry (MALDI-IMS).. Young adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). Frontal lobe WM was examined for indices of lipid and protein oxidation and lipid profile alterations by MALDI-IMS. Lipid ions were identified by MS/MS with the LIPID MAPS prediction tools database. Inter-group comparisons were made using principal component analysis and R-generated heatmap.. CS increased lipid and protein adducts such that higher levels were present in CS8 compared with CS4 samples. CS8 + R reversed CS8 effects and normalized the levels of oxidative stress. MALDI-IMS demonstrated striking CS-associated alterations in WM lipid profiles characterized by either reductions or increases in phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine) and sphingolipids (sulfatides), and partial reversal of CS's inhibitory effects with recovery. The heatmap hierarchical dendrogram and PCA distinguished CS exposure, duration, and withdrawal effects on WM lipid profiles.. CS-mediated WM degeneration is associated with lipid peroxidation, protein oxidative injury, and alterations in myelin lipid composition, including shifts in phospholipids and sphingolipids needed for membrane integrity, plasticity, and intracellular signaling. Future goals are to delineate WM abnormalities in AD using MALDI-IMS, and couple the findings with MRI-mass spectroscopy to improve in vivo diagnostics and early detection of brain biochemical responses to treatment. Topics: Aldehydes; Analysis of Variance; Animals; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Frontal Lobe; Lipid Metabolism; Male; Mice; Phospholipids; Principal Component Analysis; Protein Carbonylation; Smoking; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Substance Withdrawal Syndrome; White Matter | 2016 |
Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.
Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. Topics: Aldehydes; Animals; Antidepressive Agents; Dinoprost; Disease Models, Animal; Excitatory Amino Acid Agonists; Frontal Lobe; Gene Expression Regulation; Lipid Peroxidation; Lithium; Male; Mitochondrial Diseases; Multienzyme Complexes; N-Methylaspartate; Rats; Rats, Inbred F344; Statistics, Nonparametric | 2016 |
Lipoxin A4 Preconditioning Attenuates Intestinal Ischemia Reperfusion Injury through Keap1/Nrf2 Pathway in a Lipoxin A4 Receptor Independent Manner.
Oxidative stress plays a critical role in the pathogenesis of intestinal ischemia reperfusion (IIR) injury. Enhancement in endogenous Lipoxin A4 (LXA4), a potent antioxidant and mediator, is associated with attenuation of IIR. However, the effects of LXA4 on IIR injury and the potential mechanisms are unknown. In a rat IIR (ischemia 45 minutes and subsequent reperfusion 6 hours) model, IIR caused intestinal injury, evidenced by increased serum diamine oxidase, D-lactic acid, intestinal-type fatty acid-binding protein, and the oxidative stress marker 15-F2t-Isoprostane. LXA4 treatment significantly attenuated IIR injury by reducing mucosal 15-F2t-Isoprostane and elevating endogenous antioxidant superoxide dismutase activity, accompanied with Keap1/Nrf2 pathway activation. Meanwhile, LXA4 receptor antagonist Boc-2 reversed the protective effects of LXA4 on intestinal injury but failed to affect the oxidative stress and the related Nrf2 pathway. Furthermore, Nrf2 antagonist brusatol reversed the antioxidant effects conferred by LXA4 and led to exacerbation of intestinal epithelium cells oxidative stress and apoptosis, finally resulting in a decrease of survival rate of rat. Meanwhile, LXA4 pretreatment upregulated nuclear Nrf2 level and reduced hypoxia/reoxygenation-induced IEC-6 cell damage and Nrf2 siRNA reversed this protective effect of LXA4 in vitro. In conclusion, these findings suggest that LXA4 ameliorates IIR injury by activating Keap1/Nrf2 pathway in a LXA4 receptor independent manner. Topics: Animals; Antioxidants; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fatty Acid-Binding Proteins; Intestines; Isoprostanes; Kelch-Like ECH-Associated Protein 1; Lactic Acid; Lipoxins; Male; Microscopy, Fluorescence; NF-E2-Related Factor 2; Oxidative Stress; Rats; Rats, Sprague-Dawley; Receptors, Lipoxin; Reperfusion Injury; RNA Interference; RNA, Small Interfering; Superoxide Dismutase | 2016 |
Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy.
The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria. Topics: Actins; Adenosine; Adenosine A3 Receptor Antagonists; Albuminuria; Animals; Body Weight; Creatinine; Dinoprost; Disease Models, Animal; Doxorubicin; Immunohistochemistry; Kidney; Kidney Diseases; Lipid Peroxidation; Male; Membrane Proteins; Mice; Mice, Inbred BALB C; NF-kappa B; Oxidative Stress; Plasminogen Activator Inhibitor 1; Proteinuria; Transforming Growth Factor beta1 | 2016 |
Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor.
Beside amyloid-β plaques and neurofibrillary tangles, brain oxidative damage has been constantly implicated in Alzheimer's disease (AD) pathogenesis. Numerous studies demonstrated that F2-isoprostanes, markers of in vivo lipid peroxidation, are elevated in AD patients and mouse models of the disease. Previously, we showed that the 8-isoprostaneF2α, (8ISO) increases brain amyloid-β levels and deposition in the Tg2576 mice. However, no data are available on its effects on behavior and tau metabolism. To this end, we characterize the behavioral, biochemical, and neuropathologic effects of 8ISO in the triple transgenic mouse model. Compared with controls, mice receiving 8ISO showed significant memory deficits, increase in tau phosphorylation, activation of the cyclin kinase 5 pathway, and neuroinflammation. All these effects were blocked by pharmacologic blockade of the thromboxane receptor. Our findings establish the novel functional role that oxidative stress via the formation of this isoprostane plays in the development of cognitive impairments and AD-related tau neuropathology. It provides important preclinical support to the neurobiological importance of the thromboxane receptor as an active player in the pathogenesis of AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Behavior; Brain; Cognition; Dinoprost; Disease Models, Animal; Humans; Memory; Mice, Transgenic; Oxidative Stress; Phosphorylation; Receptors, Thromboxane; tau Proteins | 2015 |
Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders.
Older human immunodeficiency virus (HIV)-1 transgenic rats are a model for HIV-1 associated neurocognitive disorders (HAND). They show behavioral changes, neuroinflammation, neuronal loss, and increased brain arachidonic acid (AA) enzymes. Aspirin (acetylsalicylate, ASA) inhibits AA oxidation by cyclooxygenase (COX)-1 and COX-2.. Chronic low-dose ASA will downregulate brain AA metabolism in HIV-1 transgenic rats.. Nine month-old HIV-1 transgenic and wildtype rats were given 42 days of 10mg/kg/day ASA or nothing in drinking water; eicosanoids were measured using ELISAs on microwaved brain extracts.. Brain 15-epi-lipoxin A4 and 8-isoprostane concentrations were significantly higher in HIV-1 transgenic than wildtype rats; these differences were prevented by ASA. ASA reduced prostaglandin E2 and leukotriene B4 concentrations in HIV-1 Tg but not wildtype rats. Thromboxane B2, 15-HETE, lipoxin A4 and resolvin D1 concentrations were unaffected by genotype or treatment.. Chronic low-dose ASA reduces AA-metabolite markers of neuroinflammation and oxidative stress in a rat model for HAND. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Aspirin; Brain; Dinoprost; Dinoprostone; Disease Models, Animal; HIV-1; Lipoxins; Male; Neurocognitive Disorders; Rats; Rats, Transgenic; Vasoconstrictor Agents | 2015 |
Renal denervation attenuates progression of atherosclerosis in apolipoprotein E-deficient mice independent of blood pressure lowering.
The renal autonomic nervous system may contribute to hypertension and vascular disease. Although the effects of renal artery denervation on blood pressure lowering are controversial, there may be other beneficial vascular effects independent of blood pressure lowering. Bilateral renal denervation (RDN) or sham operation (SO) was performed in 14-week-old male apolipoprotein E-deficient mice on a Western diet starting at 10 weeks of age. Efficacy of RDN was confirmed by reduction of renal norepinephrine levels (SO: 3.8±0.1 versus RDN: 1.7±0.3 ng/mL; P<0.01) at 6 weeks after procedure. Compared with SO, RDN had no effect on blood pressure (SO: 101.0±2.4 versus RDN: 97.5±1.6 mm Hg; P=0.25), total cholesterol (SO: 536.7±28.5 versus RDN: 535.7±62.9 mg/dL; P=0.99), or triglycerides (SO: 83.7±3.5 versus RDN: 86.9±10.2 mg/dL; P=0.78). Quantification of atherosclerosis at 20 weeks of age demonstrated reduced atherosclerosis in mice receiving RDN compared with SO (arterial tree oil-red-O surface staining RDN: 4.2±0.5% versus SO: 6.3±0.7%; P<0.05). Reduced atherosclerosis was associated with increased smooth muscle cell content in atherosclerotic plaques (RDN: 13.3±2.1 versus SO: 8.1±0.6%; P<0.05). Serum levels of aldosterone, monocyte chemoattractant protein-1, and 8-isoprostane were lower in mice that received RDN compared with sham-operated mice (aldosterone; RDN: 206.8±33.2 versus SO: 405.5±59.4 pg/mL, P<0.05; monocyte chemoattractant protein-1; RDN: 51.7±7.9 versus SO: 91.71±4.6 pg/mL, P<0.05; 8-isoprostane; RDN: 331.9±38.2 versus SO: 468.5±42.0 pg/mL, P<0.05). RDN reduces progression of atherosclerosis in apolipoprotein E-deficient mice. These changes are associated with reduced aldosterone levels, monocyte chemoattractant protein-1, and markers of oxidative stress. Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Pressure Determination; Chemokine CCL2; Dinoprost; Disease Models, Animal; Disease Progression; Hypertension; Kidney; Male; Mice; Oxidative Stress; Sympathectomy | 2015 |
Exposure to Deepwater Horizon Crude Oil Burnoff Particulate Matter Induces Pulmonary Inflammation and Alters Adaptive Immune Response.
The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill. Topics: Adaptive Immunity; Animals; Asthma; Cell Death; Cell Line; Cell Survival; Dinoprost; Disease Models, Animal; Electron Spin Resonance Spectroscopy; Environmental Exposure; Female; Mice, Inbred BALB C; Mucus; Oxidative Stress; Particulate Matter; Petroleum; Petroleum Pollution; Pneumonia; Superoxides; Time Factors | 2015 |
Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension.
Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO) activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt) hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension. Topics: Animals; Antihypertensive Agents; Antioxidants; Blood Pressure; Desoxycorticosterone; Dinoprost; Disease Models, Animal; Hypertension; Lipid Peroxides; Male; NADPH Oxidases; Nitrites; Nitrogen Oxides; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Sodium Nitrite; Xanthine Oxidase | 2015 |
Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart.
In vitro studies suggested that glucose metabolism through the oxidative pentose phosphate pathway (oxPPP) can paradoxically feed superoxide-generating enzymes in failing hearts. We therefore tested the hypothesis that acute inhibition of the oxPPP reduces oxidative stress and enhances function and metabolism of the failing heart, in vivo. In 10 chronically instrumented dogs, congestive heart failure (HF) was induced by high-frequency cardiac pacing. Myocardial glucose consumption was enhanced by raising arterial glycemia to levels mimicking postprandial peaks, before and after intravenous administration of the oxPPP inhibitor 6-aminonicotinamide (80 mg/kg). Myocardial energy substrate metabolism was measured with radiolabeled glucose and oleic acid, and cardiac 8-isoprostane output was used as an index of oxidative stress. A group of five chronically instrumented, normal dogs served as control. In HF, raising glycemic levels from ∼ 80 to ∼ 170 mg/dL increased cardiac isoprostane output by approximately twofold, whereas oxPPP inhibition normalized oxidative stress and enhanced cardiac oxygen consumption, glucose oxidation, and stroke work. In normal hearts glucose infusion did not induce significant changes in cardiac oxidative stress. Myocardial tissue concentration of 6P-gluconate, an intermediate metabolite of the oxPPP, was significantly reduced by ∼ 50% in treated versus nontreated failing hearts, supporting the inhibitory effect of 6-aminonicotinamide. Our study indicates an important contribution of the oxPPP activity to cardiac oxidative stress in HF, which is particularly pronounced during common physiological changes such as postprandial glycemic peaks. Topics: 6-Aminonicotinamide; Animals; Blood Glucose; Cardiotonic Agents; Dinoprost; Disease Models, Animal; Dogs; Gluconates; Glycolysis; Heart Failure; Male; Myocardium; Oxidation-Reduction; Oxidative Stress; Oxygen Consumption; Pentose Phosphate Pathway; Recovery of Function; Stroke Volume; Superoxides; Time Factors; Ventricular Function, Left; Ventricular Pressure | 2014 |
Calcitriol supplementation improves endothelium-dependent vasodilation in rat hypertensive renal injury.
Vitamin D increases renal expression of klotho in normotensive rats. Klotho reduces oxidative stress.. In this study, we aimed to determine if vitamin D would suppress oxidative stress using 4 groups of hypertensive rats: uninephrectomized, stroke-prone, spontaneously hypertensive rats fed a high-salt (6%) diet (controls; C); those treated with irbesartan (I); those treated with calcitriol (V); and those treated with both irbesartan and calcitriol (I+V).. Systolic blood pressure was higher in the C group than in the I and I+V groups. Albuminuria was attenuated in groups I, V, and I+V. Renal angiotensin II (AngII) concentration was lower in groups I and I+V than in group C, and plasma AngII levels of groups I and V were higher and lower than those in group C, respectively. Compared with group C, renal klotho expression, 8-epi-prostaglandin F2α excretion, and acetylcholine-induced decrease in blood pressure improved in the V and I+V groups.. The data indicate that irbesartan effectively decreases blood pressure and renal AngII levels, and improves albuminuria. Our findings indicate that vitamin D enhances klotho expression, suppressing oxidative stress and albuminuria without substantial changes in renal AngII levels. These results suggest that the amelioration of endothelium function by vitamin D involves free klotho. Topics: Angiotensin II; Animals; Antihypertensive Agents; Biphenyl Compounds; Blood Pressure; Calcitriol; Dietary Supplements; Dinoprost; Disease Models, Animal; Endothelium, Vascular; Glucuronidase; Hypertension; Irbesartan; Kidney; Kidney Diseases; Klotho Proteins; Male; Oxidative Stress; Rats; Rats, Inbred SHR; Tetrazoles; Vasodilation; Vitamins | 2014 |
N-acetylcysteine reduces oxidative stress, nuclear factor‑κB activity and cardiomyocyte apoptosis in heart failure.
The roles of oxidative stress on nuclear factor (NF)‑κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N‑acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis‑related protein expression, NF‑κBp65 expression and activity, total anti‑oxidative capacity (tAOC), 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl‑2/Bax ratios as well as increased 8‑iso‑PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF‑κBp65 and iNOS levels were significantly higher and the P‑IκB‑α levels were significantly lower in the HF group; expression of all three proteins returned to pre‑HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF‑κBp65 expression and 8‑iso‑PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and ‑dp/dtmin, respectively) and the Bcl‑2/Bax ratio (all P<0.001). The 8‑iso‑PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and ‑dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF‑κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model. Topics: Acetylcysteine; Animals; Apoptosis; bcl-2-Associated X Protein; Dinoprost; Disease Models, Animal; Glutathione; Heart Failure; Hemodynamics; I-kappa B Proteins; Myocardium; Myocytes, Cardiac; NF-KappaB Inhibitor alpha; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Rabbits; Transcription Factor RelA | 2014 |
Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in rats.
Sudden cardiac arrest is a leading cause of death worldwide. Three-fourths of cardiac arrest patients die before hospital discharge or experience significant neurological damage. Hydrogen-rich saline, a portable, easily administered, and safe means of delivering hydrogen gas, can exert organ-protective effects through regulating oxidative stress, inflammation, and apoptosis. We designed this study to investigate whether hydrogen-rich saline treatment could improve survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation, and the mechanism responsible for this effect.. Sprague-Dawley rats were subjected to 8 minutes of cardiac arrest by asphyxia. Different doses of hydrogen-rich saline or normal saline were administered IV at 1 minute before cardiopulmonary resuscitation, followed by injections at 6 and 12 hours after restoration of spontaneous circulation, respectively. We assessed survival, neurological outcome, oxidative stress, inflammation biomarkers, and apoptosis.. Hydrogen-rich saline treatment dose dependently improved survival and neurological function after cardiac arrest/resuscitation. Moreover, hydrogen-rich saline treatment dose dependently ameliorated brain injury after cardiac arrest/resuscitation, which was characterized by the increase of survival neurons in hippocampus CA1, reduction of brain edema in cortex and hippocampus, preservation of blood-brain barrier integrity, as well as the decrease of serum S100β and neuron-specific enolase. Furthermore, we found that the beneficial effects of hydrogen-rich saline treatment were associated with decreased levels of oxidative products (8-iso-prostaglandin F2α and malondialdehyde) and inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and high-mobility group box protein 1), as well as the increased activity of antioxidant enzymes (superoxide dismutase and catalase) in serum and brain tissues. In addition, hydrogen-rich saline treatment reduced caspase-3 activity in cortex and hippocampus after cardiac arrest/resuscitation.. Hydrogen-rich saline treatment improved survival and neurological outcome after cardiac arrest/resuscitation in rats, which was partially mediated by reducing oxidative stress, inflammation, and apoptosis. Topics: Administration, Intravenous; Animals; Antioxidants; Apoptosis; Biomarkers; Blood-Brain Barrier; Brain; Brain Injuries; Cardiopulmonary Resuscitation; Caspase 3; Cytokines; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Fluid Therapy; Heart Arrest; Hydrogen; Inflammation Mediators; Male; Malondialdehyde; Neurons; Neuroprotective Agents; Oxidative Stress; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; S100 Calcium Binding Protein beta Subunit; Sodium Chloride; Time Factors | 2014 |
Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia-reperfusion injury.
To date, there are no effective treatments for extremity ischemia-reperfusion (IR) injury. The objective of the present study was to explore the protective effect of Mailuoning on IR injury by investigating the plasma levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF2α) and the activity of superoxide dismutase (SOD) in rabbits.. The experimental models of posterior limb IR injury were established in thirty rabbits that were divided into three groups: the sham, IR, and IR + Mailuoning groups. At the end of ischemia, Mailuoning was injected intravenously into the rabbits in the IR + Mailuoning group, and normal saline solution was administered to the rabbits in the sham and IR groups. Venous blood samples were collected to measure the levels of 8-iso-PGF2α and the activity of SOD in the plasma at the following time points: at the onset of ischemia, the end of ischemia, and 2, 4, 8, 12, and 24 h after reperfusion. The skeletal muscles were harvested to examine the ultrastructure.. The levels of 8-iso-PGF2α increased significantly and SOD activity decreased in the IR group at every time point after reperfusion (P <0.01 or P <0.05). In contrast, the levels of 8-iso-PGF2α and SOD activity were not significantly different after reperfusion in the IR + Mailuoning group (P >0.05) but were significantly different compared with the IR group (P <0.01). Using electron microscopy, the skeletal muscle injury was shown to be milder in the IR+ Mailuoning group after reperfusion compared with the IR group.. The Mailuoning is capable of decreasing the excessive production of 8-iso-PGF2α and protecting SOD activity, thereby exhibiting a protective effect on extremity IR injury. Topics: Animals; Cytoprotection; Dinoprost; Disease Models, Animal; Drugs, Chinese Herbal; Enzyme Activation; Extremities; Injections, Intralesional; Male; Microscopy, Electron, Transmission; Muscle, Skeletal; Rabbits; Reperfusion Injury; Superoxide Dismutase | 2014 |
[Role of Nrf2 in the protective effects of hydrogen against cerebral dysfunction in septic mice].
To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effects of hydrogen against cerebral dysfunction in a mouse model of sepsis.. Male ICR mice were randomly divided into sham operation group, hydrogen control group, sepsis group and hydrogen treatment group, with 20 in each group. Sepsis model was reproduced by cecal ligation and puncture (CLP). 2% hydrogen inhalation was given for 1 hour at 1 hour and 6 hours after operation in hydrogen treatment group. The brain tissues were obtained at 24 hours after operation. The histopathologic changes and neuron apoptosis in the hippocampus were observed under the microscope. The expressions of nucleus and total Nrf2 in hippocampus were detected by Western Blot. The activities of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in hippocampus were also detected. The changes of learning and memory abilities were observed by Morris water maze test at day 4 to 9 after operation.. Compared with the sham operation and hydrogen control groups, in the sepsis group, the number of normal pyramidal neurons in the hippocampal CA1 region was markedly reduced, the apoptotic index was marked increased, the expressions of nucleus and total Nrf2 were partly increased, the activities of SOD and CAT in the hippocampus were significantly decreased, and the levels of MDA and 8-iso-PGF2α were markedly increased, the escape latency at day 4 to 8 after operation was significantly extended, and there was no difference in swimming speed, the percentage of time in the target quadrant and the times of the platform crossing were significantly decreased on probe day. Compared with the sepsis group, in the hydrogen treatment group, the number of normal pyramidal neurons in the hippocampal CA1 region was markedly increased (67.33 ± 6.89 vs. 42.33 ± 6.02, P<0.01), the apoptotic index was dramatically reduced [(30.00 ± 4.77)% vs. (80.50 ± 6.99)%, P<0.01], the expressions of nucleus and total Nrf2 were significantly increased [nucleus Nrf2 (A value): 5.07 ± 0.35 vs. 3.04 ± 0.34, total Nrf2 (A value): 4.24 ± 0.58 vs. 2.91 ± 0.37, both P<0.01], the activities of SOD and CAT in the hippocampus were significantly increased [SOD (U/mg): 120.96 ± 13.44 vs. 81.16 ± 12.28, CAT (U/mg): 9.11 ± 1.28 vs. 5.64 ± 1.88, both P<0.01], and the levels of MDA and 8-iso-PGF2α were markedly reduced [MDA (nmol/mg): 16.12 ± 1.49 vs. 27.64 ± 1.87, 8-iso-PGF2α (pg/mg): 183.43 ± 13.07 vs. 864.07 ± 49.92, both P<0.01], the escape latency at day 5 to 8 after operation was significantly shortened, and there was no difference in swimming speed, the percentage of time in the target quadrant [(37.06 ± 1.16)% vs. (24.42 ± 1.82)%, P<0.01] and the times of the platform crossing (7.13 ± 0.98 vs. 4.88 ± 0.99, P<0.01) were significantly increased on probe day. There was no statistical difference in above indexes between sham operation group and hydrogen control group.. Hydrogen inhalation can ameliorate pathological injury in brain and impairment of learning and memory abilities of septic mice, which may be associated with the up-regulation of Nrf2, the increase of antioxidant enzymes activities and the decrease of oxidative products. Topics: Animals; Brain; Dinoprost; Disease Models, Animal; Hydrogen; Male; Malondialdehyde; Mice; Mice, Inbred ICR; NF-E2-Related Factor 2; Sepsis; Superoxide Dismutase | 2014 |
Serelaxin reduces oxidative stress and asymmetric dimethylarginine in angiotensin II-induced hypertension.
Recent findings suggest the therapeutic action of relaxin during hypertension is dependent on nitric oxide synthase (NOS) activation; however, the mechanisms underlying the beneficial effects of relaxin on the NOS system have not been fully elucidated. We hypothesized that the protective effects of relaxin include reducing both oxidative stress and the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). We examined the effect of Serelaxin [human recombinant relaxin-2 (RLX)] in male Sprague-Dawley rats given high-dose angiotensin (ANG) II (400 ng·kg(-1)·min(-1) sc) for 6 wk or shams. RLX was administered (4 μg/h sc) to half of the rats in each group after 2 wk of ANG II for the remaining 4 wk. ANG II induced hypertension and proteinuria, reduced NO oxidation products (NOx), and increased oxidative stress (NADPH oxidase activity, thiobarbituric acid-reactive substances, and 8-isoprostane excretion) and plasma ADMA. While RLX had no effect on sham rats, RLX attenuated the ANG II-dependent hypertension (165 ± 5 vs. 135 ± 13 mmHg, P < 0.05) and proteinuria at 6 wk (62 ± 6 vs. 41 ± 4 mg·day(-1)·100 g(-1), P < 0.05) and normalized oxidative stress and circulating ADMA, in association with restored NOx excretion and kidney cortex NOx. We found that RLX had no impact on the ADMA-regulatory enzymes protein arginine methyltransferase and dimethylarginine-dimethylaminohydrolase (DDAH). Furthermore, RLX treatment did not increase DDAH activity in kidney cortex or liver. These data suggest that benefits of RLX treatment include reduced ADMA levels and increased NO bioavailability, possibly due to its antioxidant effects. Topics: Angiotensin II; Animals; Antihypertensive Agents; Antioxidants; Arginine; Arterial Pressure; Dinoprost; Disease Models, Animal; Down-Regulation; Humans; Hypertension; Injections, Subcutaneous; Kidney; Liver; Male; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Proteinuria; Rats, Sprague-Dawley; Recombinant Proteins; Relaxin; Thiobarbituric Acid Reactive Substances | 2014 |
[Protective effects of inhaled hydrogen gas on cognitive function in mice with sepsis-associated encephalopathy].
To evaluate protective effects of inhaled hydrogen gas (H2) on cognitive function in a murine model of sepsis-associated encephalopathy (SAE).. A total of 84 male ICR mice, weighing 20-25 g, aged 6-8 weeks, were randomly divided into 4 groups of sham, sham+H2, sepsis and sepsis+H2. Sepsis was established by cecal ligation and puncture (CLP). Mice in sham+H2 and sepsis+H2 groups received 2% H2 inhalation for 1 h at 1 h and 6 h after sham operation or CLP operation respectively. The changes of neurological function and neuronal damage in hippocampal CA1 region were observed at 24 h post-operation. The activities of superoxide dismutase (SOD) and catalase (CAT) and the levels of malondialdehyde (MDA) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in sera and hippocampus were detected at 24 h post-operation. The changes of cognitive function were observed by Y-maze test and fear conditional test at days 3 to 14 post-operation.. Compared with sham group, the neurological function significantly declined and neurons in hippocampal CA1 region were significantly damaged; the activities of SOD and CAT markedly decreased while the levels of MDA and 8-iso-PGF2α markedly increased in sera and hippocampus; the time in new zone and the percentage of freezing time dramatically decreased at days 3 to 14 post-operation in sepsis group (P < 0.05) . Compared with sepsis group, neurological function significantly improved and damaged neurons in hippocampal CA1 region significantly reduced; the activities of SOD and CAT markedly increased and the levels of MDA and 8-iso-PGF2α markedly decreased in sera and hippocampus; the time in new zone and the percentage of freezing time dramatically increased at days 3 to 14 post-operations in sepsis+H2 group (P < 0.05).. H2 inhalation can significantly alleviate neuronal damage and improve cognitive dysfunction in CLP-induced SAE mice. And it is probably associated with the increased activities of antioxidant enzymes and the reduced levels of oxidative products. Topics: Animals; Cognition; Cognition Disorders; Dinoprost; Disease Models, Animal; Hippocampus; Hydrogen; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Neurons; Sepsis-Associated Encephalopathy; Superoxide Dismutase | 2014 |
Resveratrol attenuates oxidative stress induced by balloon injury in the rat carotid artery through actions on the ERK1/2 and NF-kappa B pathway.
Oxidative stress plays a critical role in pathogenesis of the neointimal arterial hyperplasia. The aim of the study was to evaluate effects of resveratrol (RSV) on the vascular hyperplasia stimulated by oxidative damage.. Balloon vascular injury was induced in rats that were intraperitonealy exposed to resveratrol (1 mg/kg) on 7 or 14 days after surgical procedure. Animals were euthanized on 7 or 14 days after operation. The blood level of 8-iso-prostaglandin F2α, arterial morphology as well as expression of monocyte chemotactic protein-1 and interleukin-6 in carotid wall were measured. Vascular smooth muscle cells (VSMCs) were isolated from the thoracic aorta. Cellular proliferation and migration assays, reactive oxygen species (ROS), superoxide dismutase (SOD) and NADPH oxidative activity, protein level of β-actin, histone H3, NF-ĸB p65, IĸB, ERK1/2, phospho-ERK1/2, phospho-p38 as well as NF-ĸB transcription activity were evaluated in-vitro after angiotensin II stimulation and resveratrol (50-200 µmol/L) treatment.. Significant decreases in neointimal/medial area, serum prostaglandin level and genes expression were found in rats treated with resveratrol, when compared to the control group. Significant changes were also revealed for proliferation and migration rates, ROS level, as well as SOD, NADPH oxidase, ERK1/2 phosphorylation and NF-ĸB transcriptional activity in cell cultures exposed to highest dose of resveratrol. Insignificant changes were observed for NF-kappaB p65 translocation and IĸB degradation, p38 phosphorylation in MAPK pathway.. Resveratrol significantly suppressed the neointimal hyperplasia after balloon injury through inhibition of oxidative stress and inflammation by blocking the ERK1/2/NF-kappa B pathway. Topics: Animals; Antioxidants; Aorta, Thoracic; Carotid Arteries; Carotid Artery Injuries; Cell Movement; Cells, Cultured; Chemokine CCL2; Dinoprost; Disease Models, Animal; Interleukin-6; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; NADPH Oxidases; NF-kappa B; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Signal Transduction; Stilbenes; Transcription Factor RelA; Transcription, Genetic | 2013 |
Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis.
Sepsis is the systemic response of an organism against microorganisms and toxins. Lithium is a therapeutic agent used for bipolar disorder and neurodegenerative disease, and it exerts pleiotropic effects on various cellular processes. The present study aimed to determine the effect of lithium on cecal ligation and puncture (CLP)-induced tissue injury in the lungs, by inhibiting the pro-inflammatory cytokine response, and the generation of reactive oxygen species (ROS) triggered by polymicrobial sepsis. Five groups of 20 rats each were used: 1) sham-operated control group; 2) CLP group; 3) 50mg/kg lithium-treated control healthy group; 4) 25 mg/kg lithium-treated CLP group; and 5) 50 mg/kg lithium-treated CLP group. A CLP polymicrobial sepsis model was applied to the rats. All rat groups were killed 16 h later, and lung and blood samples were analyzed histopathologically and biochemically. The 25 and 50 mg/kg of lithium decreased the level of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and the tumor necrosis factor-α (TNF-α) in the serum, and the 8-iso-prostaglandin F2α (8-ISO) level in lung tissue. The lithium also increased the activity of superoxide dismutase (SOD) and the total levels of glutathione (GSH) in the lung tissues of rats. The histopathological scores and examinations were in accordance with the biochemical results, and revealed significant differences in the inflammation scores between the sepsis group and the other groups. The CLP+lithium 50mg/kg group had the lowest inflammation score among the CLP groups. Our results indicated that the therapeutic administration of lithium prevented oxidative stress changes and cytokine changes, and also protected vital tissues. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Cytokines; Dinoprost; Disease Models, Animal; Glutathione; Lithium Carbonate; Male; Rats; Rats, Wistar; Sepsis; Superoxide Dismutase | 2013 |
Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits.
Hydrogen-rich saline (HS) is reported to be a new therapeutic agent in ischemia-reperfusion (I/R)-induced organ damage. The present study was designed to investigate the beneficial effects of HS against spinal cord I/R injury and its associated mechanisms. Spinal cord ischemia was induced by infrarenal aortic occlusion for 20min in male New Zealand white rabbits. Different doses of HS were intravenously (i.v.) administered at 5min before or after the beginning of reperfusion. Moreover, the roles of mitochondrial ATP-sensitive potassium channels (mitoKATP), oxidative stress, inflammatory cytokines and apoptosis was assessed. Here, we found that I/R-challenged rabbits exhibited significant spinal cord injury characterized by the decreased numbers of normal motor neurons and hind-limb motor dysfunction, which was significantly ameliorated by 5mL/kg and 10mL/kg HS treatment before reperfusion or 10mL/kg HS treatment after reperfusion. However, the protective effects of HS treatment in spinal cord I/R injury were partially abolished by the selective mitoKATP channel blocker 5-hydroxydecanoate (5-HD). Moreover, we showed that the beneficial effects of 10mL/kg HS treatment against spinal cord I/R damage were associated with the decreased levels of oxidative products [8-iso-prostaglandin F2α (8-iso-PGF2α) and malondialdehyde (MDA)] and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and high-mobility group box 1 (HMGB1)], as well as the increased activities of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] in serum at 6h, 12h, 24h, 48h and 72h after reperfusion and in spinal cord at 72h after reperfusion. Furthermore, HS treatment (10mL/kg) reduced caspase-3 activity in the spinal cord of this model. Thus, HS may be an effective therapeutic agent for spinal cord I/R injury via activation of mitoKATP channels as well as reduction of oxidative stress, inflammatory cytokines and apoptosis. Topics: Acyl Coenzyme A; Animals; Caspase 3; Catalase; Cytokines; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Hydrogen; Male; Malondialdehyde; Motor Neurons; Neurologic Examination; Neuroprotective Agents; Oxidative Stress; Potassium Channels; Rabbits; Reperfusion Injury; Sodium Chloride; Spinal Cord Ischemia; Superoxide Dismutase; Time Factors | 2013 |
Fluorofenidone inhibits nicotinamide adeninedinucleotide phosphate oxidase via PI3K/Akt pathway in the pathogenesis of renal interstitial fibrosis.
Oxidative stress plays an important role in the progression of renal interstitial fibrosis. The nicotinamide adeninedinucleotide phosphate (NADPH) oxidase (Nox) family is considered one of the major sources of reactive oxygen species (ROS). In the present study, we investigated the inhibitory effects of a novel anti-fibrotic agent, Fluorofenidone (AKF-PD), upon Nox-mediated oxidative stress and deposition of extracellular matrix (ECM) in the development of renalinterstitial fibrosis.. AKF-PD was used to treat renal fibrosis in unilateral ureteral obstruction (UUO) obstructive nephropathy in rats. The expression of Nox homologues, p-Akt, collagen I and III were detected by immunoblotting or immunohistochemistry. Levels of 8-iso prostaglandin F2alpha (8-Iso PGF2a) was measured by enzyme linked immunosorbent assay. In addition, ROS and the expression of collagen I (1a), Nox subunits and p-Akt was measured in angiotensin (Ang) II-stimulated rat proximal tubular epithelial (NRK-52E) cells in culture.. AKF-PD treatment significantly attenuated tubulo-interstitial injury, ECM deposition and oxidative stress in fibrotic rat kidneys. In addition, AKF-PD inhibited the expression of ROS, Collagen I (1a), Nox2, p-Akt in Ang II-stimulated NRK-52E cells.. AKF-PD attenuates the progression of renal interstitial fibrosis partly by suppressing NADPH oxidase and ECM deposition via the PI3K/Akt signalling pathway, suggesting AKF-PD is a potential novel therapeutic agent against renal fibrosis. Topics: Angiotensin II; Animals; Antioxidants; Cell Line; Class Ia Phosphatidylinositol 3-Kinase; Collagen Type I; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Fibrosis; Kidney Diseases; Kidney Tubules; Lipid Peroxidation; Losartan; Male; Membrane Glycoproteins; NADPH Oxidase 2; NADPH Oxidases; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Pyridones; Rats; Rats, Sprague-Dawley; Signal Transduction; Transfection; Ureteral Obstruction | 2013 |
Effects of Nogo-A receptor antagonist on the regulation of the Wnt signaling pathway and neural cell proliferation in newborn rats with hypoxic ischemic encephalopathy.
Hypoxic ischemic encephalopathy is a serious condition due to inadequate oxygen supply to the brain. Regeneration of neural cells is a critical process for repairing the damaged brain. Nogo has been identified as an inhibitor of neurite outgrowth that is specific to the brain. In the present study, the Nogo-A receptor (NgR) antagonist NEP1-40 was used to study the effects of inhibition of NgR on the regeneration of neural cells and the related Wnt signaling pathway in newborn rats. The investigation focused on the transcription factors regulated in the Wnt signaling pathway during the repair process, together with the proliferation of neural cells. The results indicated that c-Jun and c-Myc were the main transcription factors involved in the Wnt signaling pathway, while neural cell proliferation in the subventricular zone was increased during this process. Topics: Animals; Animals, Newborn; Cell Proliferation; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hypoxia-Ischemia, Brain; JNK Mitogen-Activated Protein Kinases; Ki-67 Antigen; Male; Myelin Proteins; Nerve Regeneration; Neurons; Nogo Proteins; Peptide Fragments; Proto-Oncogene Proteins c-myc; Rats; Rats, Wistar; Up-Regulation; Wnt Signaling Pathway | 2013 |
A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats.
Aging-associated declines in cognitive, emotional, and cardiovascular function are well known. Environmental stress triggers critical changes in the brain, further compromising cardiovascular and behavioral health during aging. Excessive dietary salt intake is one such stressor. Here, we tested the effect of high salt (HS) on anxiety, learning-memory function, and blood pressure (BP) in male Fischer brown Norway (FBN) rats. Adult (A; 2 mo) and old (O; 20 mo) male rats were fed normal-salt (NS; 0.4% NaCl) or HS (8% NaCl) diets for 4 wk after being implanted with telemeter probes for conscious BP measurement. Thereafter, tests to assess anxiety-like behavior and learning-memory were conducted. The rats were then killed, and samples of plasma, urine, and brain tissue were collected. We found that systolic BP was higher in O-NS (117 ± 1.2 mm Hg) than in A-NS (105 ± 0.8 mm Hg) rats (P < 0.05). Furthermore, BP was higher in O-HS (124 ± 1.4 mm Hg) than in O-NS (117 ± 1.2 mm Hg) rats (P < 0.05). Moreover, anxiety-like behavior (light-dark and open-field tests) was not different between A-NS and O-NS rats but was greater in O-HS rats than in A-NS, O-NS, or A-HS rats (P < 0.05). Short-term memory (radial arm water maze test) was similar in A-NS and O-NS rats but was significantly impaired in O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05). Furthermore, oxidative stress variables (in plasma, urine, and brain) as well as corticosterone (plasma) were greater in O-HS rats when compared with A-NS, O-NS, or A-HS rats (P < 0.05). The antioxidant enzyme glyoxalase-1 expression was selectively reduced in the hippocampus and amygdala of O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05), whereas other antioxidant enzymes, glutathione reductase 1, manganese superoxide dismutase (SOD), and Cu/Zn SOD remained unchanged. We suggest that salt-sensitive hypertension and behavioral derangement are associated with a redox imbalance in the brain of aged FBN rats. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aging; Animals; Anxiety; Blood Pressure; Corticosterone; Deoxyguanosine; Diet; Dinoprost; Disease Models, Animal; Gene Expression Regulation; Glutathione Reductase; Hypertension; Lactoylglutathione Lyase; Learning; Male; Memory, Short-Term; Oxidative Stress; Rats; Sodium Chloride, Dietary; Superoxide Dismutase | 2013 |
Hydrogen peroxide accumulation in the choroid during intermittent hypoxia increases risk of severe oxygen-induced retinopathy in neonatal rats.
Extremely low gestational age neonates (ELGANs) requiring oxygen therapy often experience frequent episodes of intermittent hypoxia (IH) and are at high risk for severe retinopathy of prematurity (ROP). Using an established model for oxygen-induced retinopathy (OIR), we examined the hypothesis that there is a critical number of daily brief IH episodes which will result in irreversible retinal oxidative damage.. Newborn rats were exposed to increasing daily clustered IH episodes (12% O₂ with 50% O₂) from postnatal day (P) 0 to P7 or P0 to P14, or placed in room air (RA) until P21 following 7- or 14-day IH. RA littermates at P7, P14, and P21 served as controls. A group exposed to constant 50% O₂ (CH) served as a second control. Blood gases, eye opening at P14, retinal, and choroidal oxidative stress and lipid peroxidation (8-isoPGF(2α)), oxidants (H₂O₂) and antioxidants (catalase and SOD), retinal pathology (adenosine diphosphatase (ADPase)-stained retinal flatmounts), and mitochondria-related genes were assessed.. pO₂ levels were higher with increasing IH episodes and remained elevated during the reoxygenation period. High SO₂ levels were associated with most severe OIR. Levels of all measured biomarkers peaked with six IH episodes and decreased with 8 to 12 episodes. H₂O₂ accumulated in the choroid during the reoxygenation period with irreversible retinal damage.. Our data suggest that six is the maximum number of IH episodes that the retina can sustain. Accumulation of H₂O₂ in the choroid may result in high levels being delivered to the entire retina, ultimately resulting in irreversible retinal oxidative damage. Topics: Animals; Animals, Newborn; Blood Gas Analysis; Catalase; Choroid; Dinoprost; Disease Models, Animal; Female; Hydrogen Peroxide; Hypoxia; Lipid Peroxidation; Male; Oxidative Stress; Oxygen; Oxygen Inhalation Therapy; Pregnancy; Rats; Rats, Sprague-Dawley; Retinopathy of Prematurity; Risk Factors; Superoxide Dismutase | 2013 |
Protective effects of reducing renal ischemia-reperfusion injury during renal hilar clamping: use of allopurinol as a nephroprotective agent.
To investigate the relationship between renal ischemia injury and concentrations of 8-isoprostane in a rat kidney model during renal hilar clamping and their correlation with the administration of allopurinol before clamping.. Reperfusion injury occurs after the reintroduction of blood flow after a prolonged period of ischemia. Thought to be due to oxygen free radicals released by the endothelial, mitochondrial, and parenchymal cells, this process leads to a cascade of events whereby infiltrative leukocytes generate cytokines and reactive oxygen species. The present study was performed in 2 parts. Our primary objective was to first develop a method of quantitating the renal damage using a prostaglandin compound formed in vivo, specifically isoprostane. After the development of this animal model of quantitating renal injury, our second objective was to apply this model and investigate allopurinol's nephroprotective abilities. A microdialysis probe was inserted into the renal parenchyma of rats to allow continuous dialysis and collection of the effluent for isoprostane levels. After clamping of the renal vessels to induce ischemia, the interstitial effluent from the probe was collected and subsequently analyzed for 8-isoprostane levels with and without allopurinol pretreatment.. Clamping of the renal hilum in this rat model significantly increased 8-isoprostane levels. After 60 minutes of clamp time, the largest absolute increase in 8-isoprostane levels resulted, representing a 3.2-fold increase from baseline. However, the rats that had been pretreated with allopurinol demonstrated significantly less isoprostane levels, to baseline levels.. Allopurinol has demonstrated significant benefits by reducing reperfusion injury in rat kidneys, as demonstrated by the use of 8-isoprostane as a tool for the real-time measurement of ischemic injury. Topics: Allopurinol; Animals; Dinoprost; Disease Models, Animal; Free Radical Scavengers; Kidney; Male; Microdialysis; Rats; Rats, Sprague-Dawley; Renal Artery; Reperfusion Injury; Time Factors | 2013 |
Hepatic response to chronic hypoxia in experimental rat model through HIF-1 alpha, activator protein-1 and NF-kappa B.
Chronic liver diseases are commonly associated with tissue hypoxia that may cause inflammation, oxidative stress, liver cell injury and increased nuclear transcriptional regulation. The hepatic response to chronic hypoxia at the molecular level has not yet been clearly understood until now. The aim of this study is to investigate whether nuclear transcription factors [hypoxia-inducible factor-1 (HIF-1α), activator protein-1 (AP-1), nuclear factor-kappa B (NF-κB)] exhibit activity changes during hepatic response to chronic hypoxia. Blood and liver samples were collected from adult Sprague-Dawley rats living in atmospheric air or 10% oxygen for four weeks. Levels of serum alanine aminotransferase (ALT), 8-isoprostane and nitrotyrosine were measured. The activities of nuclear transcription factors and the expression of downstream genes (iNOS, eNOS, ET-1 and VEGF) were measured using RT-PCR, Western blotting and Gel shift analysis. Results showed that serum ALT level, 8-isoprostane level and formation of nitrotyrosine were within normal range at all time-points. In the hypoxic liver, DNA-binding activities of HIF-1α, NF-κB and AP-1 increased significantly. Expression levels of iNOS, VEGF and ET-1 progressively increased from day 7 to day 28. eNOS was also elevated in the hypoxic liver. In conclusion, our study suggests that increased activity of HIF-1α, AP-1 and NF-κB may partly play a significant role in the hepatic response to oxidative stress and liver injury under chronic hypoxia. The increased expression of VEGF, ET-1, iNOS and eNOS may be partly due to the compensatory mechanism in the vascular beds of the liver in response to chronic hypoxia. Topics: Alanine Transaminase; Animals; Biomarkers; Blotting, Western; Chronic Disease; Dinoprost; Disease Models, Animal; Electrophoretic Mobility Shift Assay; Endothelin-1; Gene Expression Regulation; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Liver; Male; NF-kappa B; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transcription Factor AP-1; Tyrosine; Vascular Endothelial Growth Factor A | 2013 |
Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease.
Inflammation and oxidative stress are linked to the deleterious effects of cigarette smoke in producing chronic obstructive pulmonary disease (COPD). Myeloperoxidase (MPO), a neutrophil and macrophage product, is important in bacterial killing, but also drives inflammatory reactions and tissue oxidation.. To determine the role of MPO in COPD.. We treated guinea pigs with a 2-thioxanthine MPO inhibitor, AZ1, in a 6-month cigarette smoke exposure model, with one group receiving compound from Smoking Day 1 and another group treated after 3 months of smoke exposure.. At 6 months both treatments abolished smoke-induced increases in lavage inflammatory cells, largely ameliorated physiological changes, and prevented or stopped progression of morphologic emphysema and small airway remodeling. Cigarette smoke caused a marked increase in immunohistochemical staining for the myeloperoxidase-generated protein oxidation marker dityrosine, and this effect was considerably decreased with both treatment arms. Serum 8-isoprostane, another marker of oxidative stress, showed similar trends. Both treatments also prevented muscularization of the small intrapulmonary arteries, but only partially ameliorated smoke-induced pulmonary hypertension. Acutely, AZ1 prevented smoke-induced increases in expression of cytokine mediators and nuclear factor-κB binding.. We conclude that an MPO inhibitor is able to stop progression of emphysema and small airway remodeling and to partially protect against pulmonary hypertension, even when treatment starts relatively late in the course of long-term smoke exposure, suggesting that inhibition of MPO may be a novel and useful therapeutic treatment for COPD. Protection appears to relate to inhibition of oxidative damage and down-regulation of the smoke-induced inflammatory response. Topics: Airway Remodeling; Animals; Dinoprost; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Female; Guinea Pigs; Hypertension, Pulmonary; Inflammation; Lung; Oxidative Stress; Peroxidase; Pulmonary Disease, Chronic Obstructive; Purines; Smoking; Thiones; Thioxanthenes; Tyrosine | 2012 |
Pretreatment with n-6 PUFA protects against subsequent high fat diet induced atherosclerosis--potential role of oxidative stress-induced antioxidant defense.
Recent evidence suggests that oxidative stress can promote antioxidant defense and thus be athero-protective. n-6 polyunsaturated fatty acids (n-6 PUFA) are more prone to oxidation, compared to monounsaturated fatty acids (MUFA) and yet have proven anti-atherosclerotic effects. In this study, we tested whether early exposure to a diet rich in n-6 PUFA, compared to a MUFA rich diet would reduce lesion burden, even with subsequent exposure to a high fat, high cholesterol diet (HF). Further, we tested to determine whether oxidative mechanisms are involved in such protection.. Twenty four, 4 week old, male, LDL receptor knockout (LDL-R(-/-)) mice were divided into two groups and fed either a n-6 PUFA rich or a MUFA rich diet for a period of 12 weeks. At this point, 4 mice from each group were euthanized and the remaining 8 mice from each group were fed a HF diet for four weeks. Atherosclerotic lesions, plasma lipids, autoantibodies to lipid peroxide modified proteins, isoprostanes and aortic catalase levels were measured. The n-6 PUFA diet reduced aortic lesions and plasma lipids compared to the MUFA diet and this reduction in lesions continued even after the mice were switched over to the HF diet, despite the fact that the plasma lipids were similar in both groups after the HF diet. n-6 PUFA fed mice had highest plasma isoprostane levels, indicating oxidative stress, but also had higher levels of aortic catalase. On the other hand, MUFA fed mice had comparatively lower levels of isoprostanes and their aortic catalase levels remained low. Finally, aortic lesions were negatively correlated with isoprostanes and catalase.. An initial exposure to a n-6 PUFA rich diet compared to a MUFA rich diet reduces atherosclerotic lesions and this protection probably involves oxidative stress induced by PUFA. Topics: Animals; Antioxidants; Aorta; Aortic Diseases; Atherosclerosis; Autoantibodies; Biomarkers; Catalase; Diet, High-Fat; Dinoprost; Disease Models, Animal; Fatty Acids, Monounsaturated; Fatty Acids, Omega-6; Lipid Peroxidation; Lipids; Male; Mice; Mice, Knockout; Oxidative Stress; Receptors, LDL; Time Factors | 2012 |
Reverse remodeling and recovery from cachexia in rats with aldosteronism.
The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca(2+), coupled to oxidative stress with increased H(2)O(2) production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal. Topics: Animals; Cachexia; Calcium; Cardiomegaly; Dinoprost; Disease Models, Animal; Gene Expression Regulation; Heart Failure; Hydrogen Peroxide; Hyperaldosteronism; Male; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Muscle, Skeletal; Muscular Atrophy; Myocardium; Myocytes, Cardiac; Necrosis; Rats; Rats, Sprague-Dawley; Recovery of Function; Time Factors; Ventricular Remodeling | 2012 |
Lycopene counteracts the hepatic response to 7,12-dimethylbenz[a]anthracene by altering the expression of Bax, Bcl-2, caspases, and oxidative stress biomarkers.
Lycopene is a carotenoid found in tomato, watermelon, pink grapefruit, and guava in high concentration. Dietary intake of lycopene has been proposed to inversely correlate with the risk of cancer. It has also been reported to provide protection against cellular damage caused by reactive oxygen species, which makes it worthwhile to study the effect of lycopene on liver damage in rat model.. In this study, we report the effect of lycopene on 7,12-dimethylbenz[a]-anthracene (DMBA)-induced expression of Bax, Bcl-2, caspases, and oxidative stres biomarkers in the liver.. Lycopene was administered orally at 20 mg/kg body weight for 20 weeks followed by the intraperitoneal injection of DMBA (50 mg/kg body weight) on day 1 and day 30 of the experiment. Control rats received vehicle (olive oil) or DMBA alone. Rats were sacrificed after completion of the treatment.. We observed that the levels of Bax, caspase-3, and caspase-9 decreased to 44, 67, and 43%, respectively, and Bcl-2 increased by 80% in DMBA-treated rats. Lycopene reversed the changes in the respective groups, and decreased the level of Bcl-2 to 25%, while increasing the Bax to 42% when compared to DMBA control. Lycopene increased the expression of caspase-3 (82.09%) and caspase-9 (58.96%), and attenuated the level of hepatic malondialdehyde (41%) and 8-isoprostane (40%) when compared to the respective controls. Glutathione (GSH) decreased significantly in DMBA group (15.89%), but reached the normal level in lycopene-treated animals. Hepatic lycopene concentration in treated rats was 8.2 nmol/g tissue.. The study reports that lycopene counteracts the hepatic response to DMBA by altering the expression of Bax, Bcl-2, caspases, and oxidative stress biomarkers in animal model. Topics: 9,10-Dimethyl-1,2-benzanthracene; Administration, Oral; Animals; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Biomarkers; Blotting, Western; Carotenoids; Caspase 3; Caspase 9; Caspases; Chemical and Drug Induced Liver Injury; Cytoprotection; Dinoprost; Disease Models, Animal; Glutathione; Liver; Lycopene; Male; Malondialdehyde; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Wistar | 2012 |
Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis.
Sepsis is the most common cause of death in intensive care units. Some studies have found that hyperoxia may be beneficial to sepsis. However, the clinical use of hyperoxia is hindered by concerns that it could exacerbate organ injury by increasing free radical formation. Recently, it has been suggested that molecular hydrogen (H2) at low concentration can exert a therapeutic antioxidant activity and effectively protect against sepsis by reducing oxidative stress. Therefore, we hypothesized that combination therapy with H2 and hyperoxia might afford more potent therapeutic strategies for sepsis. In the present study, we found that inhalation of H2 (2%) or hyperoxia (98%) alone improved the 14-day survival rate of septic mice with moderate cecal ligation and puncture (CLP) from 40% to 80% or 70%, respectively. However, combination therapy with H2 and hyperoxia could increase the 14-day survival rate of moderate CLP mice to 100% and improve the 7-day survival rate of severe CLP mice from 0% to 70%. Moreover, moderate CLP mice showed significant organ damage characterized by the increases in lung myeloperoxidase activity, lung wet-to-dry weight ratio, protein concentration in bronchoalveolar lavage, serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, creatinine, and blood urea nitrogen), and organ histopathological scores (lung, liver, and kidney), as well as the decrease in PaO2/FIO2 ratio at 24 h, which was attenuated by either H2 or hyperoxia alone. However, combination therapy with H2 and hyperoxia had a more beneficial effect against lung, liver, and kidney damage of moderate or severe CLP mice. Furthermore, we found that the beneficial effect of this combination therapy was associated with the decreased levels of oxidative product (8-iso-prostaglandin F2α), increased activities of antioxidant enzymes (superoxide dismutase and catalase) and anti-inflammatory cytokine (interleukin 10), and reduced levels of proinflammatory cytokines (high-mobility group box 1 and tumor necrosis factor α) in serum and tissues. Therefore, combination therapy with H2 and hyperoxia provides enhanced therapeutic efficacy via both antioxidant and anti-inflammatory mechanisms and might be potentially a clinically feasible approach for sepsis. Topics: Alanine Transaminase; Animals; Catalase; Coinfection; Cytokines; Dinoprost; Disease Models, Animal; Glutamyl Aminopeptidase; Hydrogen; Hyperoxia; Inflammation Mediators; Kidney; Liver; Lung; Male; Mice; Peroxidase; Sepsis; Superoxide Dismutase | 2012 |
Ischemic postconditioning alleviates neuronal injury caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion.
The effects of early relief of heavy bilateral carotid stenosis and ischemic postconditioning on hippocampus CA1 neurons are still unclear. In this study, we used a rat model to imitate severe bilateral carotid stenosis in humans. The rats were divided into sham group, carotid stenosis group, stenosis relief group and ischemic postconditioning group. Ischemic postconditioning consisted of three cycles of 30 s ischemia and 30 s reperfusion. The cerebral blood flow was measured with a laser Doppler flowmeter. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and the number of live neurons was assessed by cell counting under a light microscope. The levels of oxidative products MDA and 8-iso-PGF2α, inflammatory factors IL-1β and TNF-α, and the activities of anti-oxidative enzymes SOD and CAT were assayed by specific enzyme-linked immunosorbent assay (ELISA) kits, respectively. We found that relief of carotid stenosis and ischemic postconditioning could increase cerebral blood flow. When stenosis was relieved, the percentage of live neurons was 66.6% ± 6.2% on day 3 and 62.3% ± 9.8% on day 27, which was significantly higher than 55.5% ± 4.8% in stenosis group. Ischemic postconditioning markedly improved the live neurons to 92.5% ± 6.7% on day 3 and 88.6% ± 9.1% on day 27. Further study showed that, neuronal death caused by relief of stenosis is associated with increased oxidative stress and enhanced inflammatory response, and the protection of ischemic postconditioning is related to inhibition of oxidative stress and suppression of inflammatory response. Topics: Animals; Apoptosis; Carotid Stenosis; Catalase; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hippocampus; Interleukin-1beta; Ischemic Postconditioning; Male; Malondialdehyde; Rats; Rats, Wistar; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2012 |
Salt and nitric oxide inhibition induced hypertension: the role of prostacycline and 8-isoprostane.
Renal prostacycline (PGI(2)) and oxidative stress are known to be important factors that effect the natriurezis and diuresis. 8-iso prostaglandin F(2)α± (8-isoprostane), a member of F(2)-isoprostanes, is formed from the nonenzymatic reaction of arachidonic acid and oxygen radicals in vivo and in vitro, and also it is a marker of oxidative stress in vivo. The aim of this study is to determine the role of renal PGI(2) and 8-isoprostane in a salt and nitric oxide (NO) inhibition-induced hypertension model. Rats were distributed equally among four groups (n = 6 per group). Control rats were given normal salt diet (0.32%); high-salt (HS) rats were given high salt diet (3.2%); NG-nitro-L-arginine (L-NNA) rats were given normal salt diet and 25 mg/kg L-NNA; HS+L-NNA rats were given high salt diet and 25 mg/kg L-NNA. Rats were placed in individual metabolic cages for 17 days. Systolic blood pressure (SBP) was measured at days initial, 7th and 14th .Urinary 8-isoprostane and PGI(2) levels were analyzed. Salt- loading alone did not change SBP values. The average SBP in L-NNA and HS+L-NNA groups were shown to significantly enhance compared to initial and day 7th in the same groups, respectively. The levels of 8-isoprostane in the HS+L-NNA group was significantly enhanced compared to the other groups. L-NNA or HS diet alone did not change the levels of 8-isoprostane compared to the control group. L-NNA alone did not change PGI(2) levels in urine compared to the control. PGI(2) levels in the HS, and the HS+L-NNA group was significantly higher compared to the control group. This study concluded that NOS inhibition plus salt-loading induced oxidative stress and increased renal PGI(2). Also, it is suggested that augmented oxidative stress may aggravate the hypertension. But the renal synthesis of PGI(2) is increased in order to augment the diuresis and natriuresis without the effect of blood pressure (BP). Topics: Animals; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Epoprostenol; Hypertension; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oxidative Stress; Rats; Rats, Sprague-Dawley; Sodium Chloride, Dietary | 2011 |
α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome.
It is widely accepted that oxidative stress is involved in the pathogenesis of Down syndrome, but the effectiveness of antioxidant treatment remains inconclusive. We tested whether chronic administration of α-tocopherol ameliorates the cognitive deficits exhibited by Ts65Dn mice, a mouse model of Down syndrome. α-Tocopherol was administered to pregnant Ts65Dn females, from the day of conception throughout the pregnancy, and to pups over their entire lifetime, from birth to the end of the behavioral testing period. Cognitive deficits were confirmed for Ts65Dn mice fed a control diet, revealing reduced anxiety or regardlessness in the elevated-plus maze task test and spatial learning deficits in the Morris water maze test. However, supplementation with α-tocopherol attenuated both cognitive impairments. In addition, we found that levels of 8-iso-prostaglandin F(2α) in brain tissue and hydroxyoctadecadienoic acid and 7-hydroxycholesterol in the plasma of Ts65Dn mice were higher than those of control mice. Supplementation with α-tocopherol decreased levels of lipid peroxidation products in Ts65Dn mice. Furthermore, we found out that α-tocopherol improved hypocellularity in the hippocampal dentate gyrus of Ts65Dn mice. These results imply that α-tocopherol supplementation from an early stage may be an effective treatment for the cognitive deficits associated with Down syndrome. Topics: alpha-Tocopherol; Animals; Animals, Newborn; Brain; Cognition Disorders; Dinoprost; Disease Models, Animal; Down Syndrome; Fatty Acids, Unsaturated; Female; Free Radicals; Hippocampus; Hydroxycholesterols; Lipid Peroxidation; Maze Learning; Mice; Mice, Neurologic Mutants; Oxidative Stress; Pregnancy; Prenatal Exposure Delayed Effects; Space Perception | 2011 |
Impact of elevated uric acid on ventricular remodeling in infarcted rats with experimental hyperuricemia.
Hyperuricemia is associated with cardiovascular disease, but it is usually considered a marker rather than a risk factor. Previous studies using uric acid-lowering drugs in normouricemic animals are not suitable to answer the effect of hyperuricemia on ventricular remodeling after myocardial infarction. The purpose of this study was to determine whether hyperuricemia adversely affects ventricular remodeling in infarcted rats with elevated uric acid. Male Wistar rats aged 8 wk were randomly assigned into either vehicle, oxonic acid, oxonic acid + allopurinol, oxonic acid + benzbromarone, oxonic acid + ABT-627, or oxonic acid + tempol for 4 wk starting 24 h after ligation. Postinfarction was associated with increased oxidant production, as measured by myocardial superoxide, isoprostane, xanthine oxidase activity, and dihydroethidium staining. Compared with normouricemic infarcted rats, hyperuricemic infarcted rats had a significant increase of superoxide production (1.7×) and endothelin-1 protein (1.2×) and mRNA (1.4×) expression, which was associated with increased left ventricular dysfunction and enhanced myocardial hypertrophy and fibrosis. These changes were all prevented by treatment with allopurinol. For similar levels of urate lowering, the uricosuric agent benzbromarone had no effect on ventricular remodeling. In spite of equivalent hyperuricemia, the ability of both ABT-627 and tempol to attenuate ventricular remodeling suggested involvement of endothelin-1 and redox pathways. Hyperuricemia is associated with unfavorable ventricular remodeling probably through a superoxide and endothelin-1-dependent pathway. Uric acid lowering without inhibition of superoxide and endothelin-1 may not have an effect on remodeling. Chronic administration of allopurinol, ABT-627, and tempol is associated with attenuated ventricular remodeling. Topics: Allopurinol; Analysis of Variance; Animals; Antioxidants; Atrasentan; Biomarkers; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Endothelin A Receptor Antagonists; Endothelin-1; Fibrosis; Gout Suppressants; Hypertrophy, Left Ventricular; Hyperuricemia; Isoprostanes; Male; Myocardial Infarction; Myocardium; Oxidative Stress; Pyrrolidines; Rats; Rats, Wistar; Receptor, Endothelin A; RNA, Messenger; Spin Labels; Superoxides; Time Factors; Up-Regulation; Uric Acid; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling; Xanthine Oxidase | 2011 |
Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease.
Early phases of Parkinson's disease (PD) are characterized by a mild reduction of dopamine (DA) in striatum and by emergence of psychiatric disturbances that precede overt motor symptoms. In order to characterize the neurochemical re-arrangements induced by such striatal impairment, we used a mouse model in which a low dose of 6-hydroxydopamine (6-OHDA) was bilaterally injected into the dorsal striatum. These mice showed a DA reduction of about 40% that remained stable up to 12 weeks after injection. This reduction was accompanied by changes in DA metabolite levels, such as HVA, transiently reduced at 4 weeks, and DOPAC, decreased at 12 weeks. No change in the 5-hydroxytryptamine (5-HT) levels was found but the 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio was increased at 4 weeks. In addition, at the same time-point, the levels of 15-F(2t)-IsoP, an index of oxidative stress, and of PGE(2), a major product of cyclooxygenase-2, were decreased in different brain areas while BDNF levels were increased. These neurochemical changes were accompanied by altered behavioral responses concerning the emotional reactivity. Overall, the present findings suggest that a change of 5-HT metabolism and a modification of oxidative stress levels may play a role in the early PD degeneration phases. Topics: Adrenergic Agents; Animals; Behavior, Animal; Biogenic Monoamines; Brain Chemistry; Brain-Derived Neurotrophic Factor; Corpus Striatum; Dinoprost; Dinoprostone; Disease Models, Animal; Exploratory Behavior; Locomotion; Male; Maze Learning; Mice; Mice, Inbred C57BL; Oxidopamine; Parkinson Disease; Swimming | 2010 |
Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism.
Intracellular Ca(2+) overloading, coupled to induction of oxidative stress, is present at 4-wk aldosterone/salt treatment (ALDOST). This prooxidant reaction in cardiac myocytes and mitochondria accounts for necrotic cell death and subsequent myocardial scarring. It is intrinsically linked to increased intracellular zinc concentration ([Zn(2+)](i)) serving as an antioxidant. Herein, we addressed the temporal responses in coupled Ca(2+) and Zn(2+) dyshomeostasis, reflecting the prooxidant-antioxidant equilibrium, by examining preclinical (week 1) and pathological (week 4) stages of ALDOST to determine whether endogenous antioxidant defenses would be ultimately overwhelmed to account for this delay in cardiac remodeling. We compared responses in cardiomyocyte free [Ca(2+)](i) and [Zn(2+)](i) and mitochondrial total [Ca(2+)](m) and [Zn(2+)](m), together with biomarkers of oxidative stress and antioxidant defenses, during 1- and 4-wk ALDOST. At week 1 and compared with controls, we found: 1) elevations in [Ca(2+)](i) and [Ca(2+)](m) were coupled with [Zn(2+)](i) and [Zn(2+)](m); 2) increased mitochondrial H(2)O(2) production, cardiomyocyte xanthine oxidase activity, and cardiac and mitochondrial 8-isoprostane levels, counterbalanced by increased activity of antioxidant proteins, enzymes, and the nonenzymatic antioxidants that can be considered as cumulative antioxidant capacity; some of these enzymes and proteins (e.g., metallothionein-1, Cu/Zn-superoxide, glutathione synthase) are regulated by metal-responsive transcription factor-1; and 3) although these augmented antioxidant defenses were sustained at week 4, they fell short in combating the persistent intracellular Ca(2+) overloading and marked rise in cardiac tissue 8-isoprostane and mitochondrial transition pore opening. Thus a coupled Ca(2+) and Zn(2+) dyshomeostasis occurs early during ALDOST in cardiac myocytes and mitochondria that regulate redox equilibrium until week 4 when ongoing intracellular Ca(2+) overloading and prooxidants overwhelm antioxidant defenses. Topics: Aldosterone; Animals; Calcium; Dinoprost; Disease Models, Animal; Glutathione Peroxidase; Homeostasis; Hyperaldosteronism; Male; Mitochondria, Heart; Myocytes, Cardiac; Necrosis; Nephrectomy; Oxidative Stress; Rats; Rats, Sprague-Dawley; Sodium Chloride; Zinc | 2010 |
Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.
Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Topics: Adaptation, Ocular; Analysis of Variance; Animals; Anxiety; Brain; Buthionine Sulfoximine; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Drug Administration Schedule; Enzyme Inhibitors; Exercise Test; Exploratory Behavior; Glutathione; Male; Malondialdehyde; Neuroprotective Agents; Oxidative Stress; Physical Conditioning, Animal; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Spin Labels; Time Factors | 2010 |
Severe dyslipidaemia, atherosclerosis, and sudden cardiac death in mice lacking all NO synthases fed a high-fat diet.
The precise role of the nitric oxide synthase (NOS) system in lipid metabolism remains to be elucidated. We addressed this point in mice that we have recently developed and that lack all three NOS isoforms.. Wild-type (WT), singly, doubly, and triply NOS(-/-) mice were fed either a regular or high-cholesterol diet for 3-5 months. The high-cholesterol diet significantly increased serum low-density lipoprotein (LDL) cholesterol levels in all the genotypes when compared with the regular diet. Importantly, when compared with the WT genotype, the serum LDL cholesterol levels in the high-cholesterol diet were significantly and markedly elevated only in the triply NOS(-/-) genotype, but not in any singly or doubly NOS(-/-) genotypes, and this was associated with remarkable atherosclerosis and sudden cardiac death, which occurred mainly in the 4-5 months after the high-cholesterol diet. Finally, hepatic LDL receptor expression was markedly reduced only in the triply NOS(-/-) genotype, accounting for the diet-induced dyslipidaemia in the genotype.. These results provide the first direct evidence that complete disruption of all NOS genes causes severe dyslipidaemia, atherosclerosis, and sudden cardiac death in response to a high-fat diet in mice in vivo through the down-regulation of the hepatic LDL receptor, demonstrating the critical role of the whole endogenous NOS system in maintaining lipid homeostasis. Topics: Animals; Aorta; Apolipoproteins E; Atherosclerosis; Biomarkers; Blood Pressure; C-Reactive Protein; Cholesterol, Dietary; Cholesterol, LDL; Death, Sudden, Cardiac; Dinoprost; Disease Models, Animal; Dyslipidemias; Genotype; Liver; Male; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peptidyl-Dipeptidase A; Phenotype; Receptors, LDL; Severity of Illness Index; Sterol Regulatory Element Binding Protein 2; Time Factors | 2010 |
Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity.
The aim of this study was to determine the effect of the antioxidant vitamin E (VE) on adiponectin and leptin expression in obese rats. Thirty weaning male Sprague-Dawley rats were divided into three groups as follows: (1) a control group, fed with normal chow; (2) a diet-induced obesity group (DIO), fed with a high-fat diet and (3) an intervention group, fed with a high-fat diet supplemented with VE (350 mg/kg). After 10 weeks of being fed according to these group assignments, rats were weighed and euthanized. Blood and adipose tissues were then immediately collected; mRNA and protein levels of leptin and adiponectin were measured by realtime reverse transcription-polymerase chain reaction and Western blotting. Biomarkers of oxidative stress, including serum levels of 8-epi-prostaglandin-F(2)alpha (8-epi-PGF(2)alpha) and glutathione peroxidase activity, were also examined. Adiponectin and leptin levels were lower in the DIO group than in the control group. VE intervention increased the expression of both leptin and adiponectin (P values < 0.05). Association analysis showed that serum leptin levels correlated positively with body fat mass (r = 0.601, P < 0.05). Both serum leptin and adiponectin levels were associated with the presence of serum 8-epi-PGF2 alpha (leptin, r = 0.513, P < 0.05; adiponectin, r = -0.422, P < 0.05). Administration of VE decreases leptin and adiponectin expression in obese rats. This finding is consistent with the view that antioxidants can play an important role in the treatment of obesity-related diseases. Topics: Adiponectin; Adipose Tissue; Animals; Antioxidants; Base Sequence; Biomarkers; Dietary Fats; Dinoprost; Disease Models, Animal; DNA Primers; Gene Expression; Glutathione Peroxidase; Leptin; Male; Obesity; Oxidative Stress; Rats; Rats, Sprague-Dawley; RNA, Messenger; Vitamin E; Weight Gain | 2010 |
High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity.
A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O(2)(-)) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O(2)(-) activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O(2)(-) scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6-8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 +/- 4 vs. 106 +/- 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 +/- 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 +/- 3 and 139 +/- 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (U(Iso)V), a marker for endogenous O(2)(-) activity, were similar (2.8 +/- 0.2 and 2.4 +/- 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased U(Iso)V more in eNOS KO than in WT (4.6 +/- 0.3 vs. 3.8 +/- 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O(2)(-) activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions. Topics: Acetophenones; Animals; Antioxidants; Blood Pressure; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Hypertension; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type III; Sodium Chloride, Dietary; Spin Labels; Superoxides | 2010 |
Local angiotensin II aggravates cardiac remodeling in hypertension.
Angiotensin II (ANG II) contributes to hypertension, cardiac hypertrophy, fibrosis, and dysfunction; however, it is difficult to separate the cardiac effect of ANG II from its hemodynamic action in vivo. To overcome the limitations, we used transgenic mice with cardiac-specific expression of a transgene fusion protein that releases ANG II from cardiomyocytes (Tg-ANG II) and treated them with deoxycorticosterone acetate (DOCA)-salt to suppress their systemic renin-angiotensin system. Using this unique model, we tested the hypothesis that cardiac ANG II, acting on the angiotensin type 1 receptor (AT(1)R), increases inflammation, oxidative stress, and apoptosis, accelerating cardiac hypertrophy and fibrosis. Male Tg-ANG II mice and their nontransgenic littermates (n-Tg) were uninephrectomized and divided into the following three groups: 1) vehicle-treated normotensive controls; 2) DOCA-salt; and 3) DOCA-salt + valsartan (AT(1)R blocker).Under basal conditions, systolic blood pressure (SBP) and cardiac phenotypes were similar between strains. In DOCA-salt hypertension, SBP increased similarly in both n-Tg and Tg-ANG II, and cardiac function did not differ between strains; however, Tg-ANG II had 1) greater ventricular hypertrophy as well as interstitial and perivascular fibrosis; 2) a higher number of deoxynucleotidyl-transferase-mediated dUTP nick end labeling-positive cells and infiltrating macrophages; 3) increased protein expression of NADPH oxidase 2 and transforming growth factor-β(1); and 4) downregulation of phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase B (Akt) phosphorylation. Valsartan partially reversed these effects in Tg-ANG II but not in n-Tg. We conclude that, when hemodynamic loading conditions remain unchanged, cardiac ANG II does not alter heart size or cardiac functions. However, in animals with hypertension, cardiac ANG II, acting via AT(1)R, enhances inflammation, oxidative stress, and cell death (most likely via downregulation of PI 3-kinase and Akt), contributing to cardiac hypertrophy and fibrosis. Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Collagen; Desoxycorticosterone; Dinoprost; Disease Models, Animal; Heart Rate; Hypertension; Male; Membrane Glycoproteins; Mice; Mice, Transgenic; Myocardium; Myocytes, Cardiac; NADPH Oxidase 2; NADPH Oxidases; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles; Transforming Growth Factor beta1; Valine; Valsartan | 2010 |
Urinary oxidative stress markers closely reflect the efficacy of candesartan treatment for diabetic nephropathy.
It has been reported that urinary oxidative stress markers are higher in diabetic patients with proteinuria. We performed the present study to elucidate the relationship between urinary excretion of oxidative stress markers, albumin excretion, and histological changes, and to confirm the potential utility of oxidative stress markers for clinical treatment.. Diabetic db/db mice or nondiabetic db/m mice were administered candesartan (10 mg/kg/day) or hydralazine (50 mg/kg/day) for 18 weeks.. Thirty-week-old male db/db mice treated with control vehicle revealed elevated urinary excretion and immunohistological levels of 8-hydroxydeoxyguanosine in glomeruli when compared to db/m mice. Treatment with candesartan, but not hydralazine, reduced these values to levels in db/m mice. Increased mesangial expansion, urinary excretion of albumin and 8-isoprostane, and glomerular immunohistological levels of nitrotyrosine in db/db mice were also decreased markedly by candesartan but not hydralazine. Interestingly, correlations between levels of albumin and oxidative stress markers in urine were very high, even when groups undergoing long-term (44 weeks) treatment were included (correlation coefficient 0.767 with respect to 8-hydroxydeoxyguanosine, 0.888 with respect to 8-isoprostane).. It is anticipated that urinary concentrations of oxidative stress markers will be direct barometers of glomerulus-derived oxidative stress and glomerular injury in diabetic nephropathy. Topics: 8-Hydroxy-2'-Deoxyguanosine; Albuminuria; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Benzimidazoles; Biomarkers; Biphenyl Compounds; Deoxyguanosine; Diabetes Mellitus; Diabetic Nephropathies; Dinoprost; Disease Models, Animal; Hydralazine; Kidney Glomerulus; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Tetrazoles; Treatment Outcome; Tyrosine | 2009 |
COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver.
The aim was to examine the role of cyclooxygenase (COX)-2-mediated inflammation in the development of obese linked insulin resistance and fatty liver. The rats were fed separately regular diet (CONT), high-fat diet (HFD) ad libitum, or energy restrictedly for 12 weeks. Rats fed HFD ad libitum were further divided into three subgroups co-treated with vehicle (HFa), or a selective COX-2 inhibitor celecoxib (HFa-Cel) or mesulid (HFa-Mes). Euglycemic hyperinsulinemic clamp (EHC) experiment was performed at the end of study. Another set of rats with similar grouping was further divided into those with a 4, 8, or 12-week intervention period for hepatic sampling. Body weight was increased significantly and similarly in HFa, HFa-Cel, and HFa-Mes. Time-dependent increases in plasma insulin, glucose, 8-isoprostanes, leptin levels, homeostasis model assessment of insulin resistance (HOMA-IR) and hepatic triglyceride contents shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. During EHC period, the reduction in stimulation of whole body glucose uptake, suppression of hepatic glucose production and metabolic clearance rate of insulin shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. The enhanced COX-2 and tumor necrosis factor-alpha (TNF-alpha) but attenuated PPAR-gamma and C/EBP-alpha mRNA expressions in epididymal fat shown in HFa were significantly reversed in HFa-Cel and HFa-Mes. The increases in average cell size of adipocytes and CD68 positive cells shown in HFa were also significantly reversed in HFa-Cel and HFa-Mes. Our findings suggest that COX-2 activation in fat inflammation is important in the development of insulin resistance and fatty liver in high fat induced obese rats. Topics: Adipocytes; Adipogenesis; Adipose Tissue; Animals; Blood Glucose; Body Weight; Celecoxib; Cell Size; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Dinoprost; Disease Models, Animal; Fatty Liver; Insulin; Insulin Resistance; Leptin; Liver; Macrophages; Male; Membrane Proteins; Obesity; Panniculitis; Pyrazoles; Rats; Rats, Sprague-Dawley; Sulfonamides; Time Factors; Triglycerides; Tumor Necrosis Factor-alpha | 2009 |
SOD1 deficiency causes salt sensitivity and aggravates hypertension in hydronephrosis.
Hydronephrosis causes renal dysfunction and salt-sensitive hypertension, which is associated with nitric oxide deficiency and abnormal tubuloglomerular feedback (TGF) response. We investigated the role of oxidative stress for salt sensitivity and for hypertension in hydronephrosis. Hydronephrosis was induced in superoxide dismutase 1-transgenic (SOD1-tg), SOD1-deficient (SOD1-ko), and wild-type mice and in rats. In mice, telemetric measurements were performed during normal (0.7% NaCl) and high-sodium (4% NaCl) diets and with chronic tempol supplementation. The 8-iso-prostaglandin-F(2alpha) (F2-IsoPs) and protein excretion profiles and renal histology were investigated. The acute effects of tempol on blood pressure and TGF were studied in rats. In hydronephrosis, wild-type mice developed salt-sensitive hypertension (114 +/- 1 to 120 +/- 2 mmHg), which was augmented in SOD1-ko (125 +/- 3 to 135 +/- 4 mmHg) but abolished in SOD1-tg (109 +/- 3 to 108 +/- 3 mmHg). SOD1-ko controls displayed salt-sensitive blood pressure (108 +/- 1 to 115 +/- 2 mmHg), which was not found in wild types or SOD1-tg. Chronic tempol treatment reduced blood pressure in SOD1-ko controls (-7 mmHg) and in hydronephrotic wild-type (-8 mmHg) and SOD1-ko mice (-16 mmHg), but had no effect on blood pressure in wild-type or SOD1-tg controls. SOD1-ko controls and hydronephrotic wild-type and SOD1-ko mice exhibited increased fluid excretion associated with increased F2-IsoPs and protein excretion. The renal histopathological changes found in hydronephrotic wild-type were augmented in SOD1-ko and diminished in SOD-tg mice. Tempol attenuated blood pressure and normalized TGF response in hydronephrosis [DeltaP(SF): 15.2 +/- 1.2 to 9.1 +/- 0.6 mmHg, turning point: 14.3 +/- 0.8 to 19.7 +/- 1.4 nl/min]. Oxidative stress due to SOD1 deficiency causes salt sensitivity and plays a pivotal role for the development of hypertension in hydronephrosis. Increased superoxide formation may enhance TGF response and thereby contribute to hypertension. Topics: Animals; Antioxidants; Biomarkers; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Feedback, Physiological; Female; Hydronephrosis; Hypertension; Infusions, Intravenous; Kidney; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley; Sodium Chloride, Dietary; Spin Labels; Superoxide Dismutase; Superoxide Dismutase-1; Telemetry; Urodynamics | 2009 |
Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.
Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo. Topics: Animals; Blood Pressure; Brain Infarction; Cells, Cultured; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme-Linked Immunosorbent Assay; F2-Isoprostanes; Gas Chromatography-Mass Spectrometry; Glutamic Acid; Infarction, Middle Cerebral Artery; L-Lactate Dehydrogenase; Mice; Mice, Inbred C57BL; Neuroglia; Neurons; Neuroprotective Agents; Nitrites; Nitrogen Oxides; Oxidative Stress; Statistics, Nonparametric; Tetrazolium Salts; Thiazoles; Time Factors | 2009 |
Importance of cyclooxygenase 2-mediated low-grade inflammation in the development of fructose-induced insulin resistance in rats.
This study was designed to examine the role of cyclooxygenase (COX) 2-mediated low-grade inflammation in the development of fructose-induced whole body and muscular insulin resistance in rats. The rats were on regular or fructose-enriched diets for 8 weeks. Fructose-fed rats were further divided into 3 groups (n = 8 per group). There were fructose-fed rats, fructose-fed rats with nimesulide (a selective COX2 inhibitor, 30 mg/kg/day, gavage) and fructose-fed rats with celecoxib (a selective COX2 inhibitor, 30 mg/kg/day, gavage). The present result showed that fructose-induced time-dependent increases in systolic blood pressure and fasting plasma insulin and triglyceride levels were significantly suppressed in rats treated with nimesulide or cerecoxib. The ratio of area under glucose curve divided by area under insulin curve obtained during the oral glucose tolerance test was significantly decreased in fructose-fed rats, which were markedly reversed in those co-treated with nimesulide or celecoxib. Accordingly, fructose-induced decrease in insulin-stimulated glucose uptake in soleus muscle was significantly reversed in those combined with nimesulide or celecoxib. Fructose-induced time-dependent increases in plasma 8-isoprostane and PGE metabolites were concomitantly suppressed by nimesulide or celecoxib co-treatment. The present study demonstrates that the COX2-mediated low-grade inflammation, especially mediated by increase in oxidative stress was important in the development of insulin resistance in fructose-fed rats. Topics: Animals; Blood Pressure; Body Weight; Cyclooxygenase 2; Dinoprost; Disease Models, Animal; Fructose; Glucose; Glucose Tolerance Test; Hypoglycemic Agents; Inflammation; Insulin; Insulin Resistance; Male; Metabolic Syndrome; Muscle, Skeletal; Prostaglandins E; Rats; Rats, Sprague-Dawley; Sweetening Agents | 2009 |
Effect of vitamin E supplementation on oxidative stress in a rat model of diet-induced obesity.
To evaluate the effect of vitamin E on the level of oxidative stress in diet-induced obese Sprague-Dawley rats.. Thirty weaning male rats were placed into three groups with 10 animals each: a control group with normal chow, a diet-induced obesity group (DIO) with high-fat diet, and an intervention group with high-fat diet supplemented with vitamin E (VE, 350 mg/kg). Blood and adipose tissue were collected from rats after 10 weeks. Biomarkers of oxidative stress were detected for plasma 8-epi-prostaglandin- F(2)alpha (8-epi-PGF(2)alpha), thiobarbituric acid-reactive substances (TBARS), total anti-oxidative capacity (TAOC), alpha-tocopherol, superoxide dismutase (SOD) activity, and glutathione peroxidase activity (GPx). Lipid and glucose metabolism parameters such as plasma glucose, insulin, and triacylglycerol (TG) were also analyzed.. After 10 weeks, all obese rats (both the DIO and VE groups) had higher plasma 8-epi-PGF(2alpha) and TBARS levels than the controls. Their plasma-adjusted alpha-tocopherol, SOD, and GPx activities were lower than the control levels but insulin was higher (p<0.01). The VE intervention increased plasma SOD, GPx, and T-AOC, and decreased 8-epi-PGF(2alpha) (p<0.05). VE intervention also decreased plasma glucose, insulin, and TG levels (p<0.05).. Increased oxidative stress could be an important target for the prevention of obesity-related diseases. Vitamin E has moderate effects for improvement of oxidative stress status and glucose metabolism in the animal model of diet-induced obesity. Topics: Analysis of Variance; Animals; Antioxidants; Biomarkers; Blood Glucose; Dietary Fats; Dietary Supplements; Dinoprost; Disease Models, Animal; Glutathione Peroxidase; Insulin; Male; Obesity; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Triglycerides; Vitamin E | 2009 |
Randomized, blinded, placebo-controlled clinical trial of N-acetylcysteine in dogs with spinal cord trauma from acute intervertebral disc disease.
The effect of N-acetylcysteine administration intravenously before hemilaminectomy surgery on neurologic outcome and 15F 2t isoprostane excretion in dogs was examined in a blinded, placebo-controlled trial.. To determine the effect of N-acetylcysteine administration on urinary 15F 2t isoprostane excretion and neurologic outcome following hemilaminectomy for intervertebral disc disease.. Oxidative stress is a mediator of secondary injury to the spinal cord following trauma. Acute intervertebral disc disease is associated with increased oxidative damage in dogs. N-acetylcysteine has preserved neurologic function following experimental spinal cord injury.. Seventy dogs with naturally occurring acute intervertebral disc disease were administered either with saline placebo or N-acetylcysteine intravenously before hemilaminectomy surgery. Serial neurologic examinations were performed before and 1, 2, 7, 14, and 42 days following treatment. Urinary excretion of 15F 2t isoprostane excretion was determined before treatment and 1 hour after surgery.. Analysis of subjective data did not reveal any significant effect of N-acetylcysteine on neurologic outcome or rate of improvement of neurologic score in the 42 days following treatment. Urinary 15F 2t isoprostane excretion was not significantly different between treatment groups (P > 0.05).. N-acetylcysteine intravenously before hemilaminectomy has no effect on urinary 15F 2t isoprostane excretion or neurologic outcome. Treatment of dogs with the antioxidant N-acetylcysteine before hemilaminectomy, while not detrimental, does not affect neurologic outcome in the 42 days following surgery. Topics: Acetylcysteine; Animals; Antioxidants; Biomarkers; Dinoprost; Disease Models, Animal; Dog Diseases; Dogs; Female; Infusions, Intravenous; Intervertebral Disc; Intervertebral Disc Displacement; Laminectomy; Male; Oxidative Stress; Random Allocation; Spinal Cord Injuries; Time Factors | 2008 |
Estrogen-induced breast cancer: alterations in breast morphology and oxidative stress as a function of estrogen exposure.
Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17beta-estradiol (E(2), 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E(2) exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E(2) exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E(2) for 240 days. Palpable breast tumors were observed in 82% of E(2)-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E(2) for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF(2alpha)) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E(2) for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF(2alpha) levels displayed time-dependent increases upon E(2) treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF(2alpha) observed in E(2)-induced mammary tumors were significantly higher than levels found in control mammary tissue from age-matched animals. Similarly, alterations in glutathione peroxidase and superoxide dismutase activities were detected in both mammary and tumor tissue from E(2)-treated rats. Taken together, our data reveal that proliferative changes in the breast tissue of ACI rats are associated with increases in 8-isoPGF(2alpha) formation as well as changes in the activities of antioxidant enzymes. These oxidative changes appear to be a function of E(2) exposure and occur prior to tumor development. Topics: Animals; Catalase; Cell Proliferation; Dinoprost; Disease Models, Animal; Drug Implants; Estradiol; Female; Glutathione Peroxidase; Lipid Peroxidation; Mammary Glands, Animal; Mammary Neoplasms, Experimental; Neoplasm Invasiveness; Neoplasms, Hormone-Dependent; Oxidative Stress; Rats; Rats, Inbred ACI; Superoxide Dismutase; Time Factors; Up-Regulation | 2008 |
Exercise restores coronary vascular function independent of myogenic tone or hyperglycemic status in db/db mice.
Regulation of coronary function in diabetic hearts is an important component in preventing ischemic cardiac events but remains poorly studied. Exercise is recommended in the management of diabetes, but its effects on diabetic coronary function are relatively unknown. We investigated coronary artery myogenic tone and endothelial function, essential elements in maintaining vascular fluid dynamics in the myocardium. We hypothesized that exercise reduces pressure-induced myogenic constriction of coronary arteries while improving endothelial function in db/db mice, a model of type 2 diabetes. We used pressurized mouse coronary arteries isolated from hearts of control and db/db mice that were sedentary or exercised for 1 h/day on a motorized exercise-wheel system (set at 5.2 m/day, 5 days/wk). Exercise caused a approximately 10% weight loss in db/db mice and decreased whole body oxidative stress, as measured by plasma 8-isoprostane levels, but failed to improve hyperglycemia or plasma insulin levels. Exercise did not alter myogenic regulation of arterial diameter stimulated by increased transmural pressure, nor did it alter smooth muscle responses to U-46619 (a thromboxane agonist) or sodium nitroprusside (an endothelium-independent dilator). Moderate levels of exercise restored ACh-simulated, endothelium-dependent coronary artery vasodilation in db/db mice and increased expression of Mn SOD and decreased nitrotyrosine levels in hearts of db/db mice. We conclude that the vascular benefits of moderate levels of exercise were independent of changes in myogenic tone or hyperglycemic status and primarily involved increased nitric oxide bioavailability in the coronary microcirculation. Topics: Animals; Blood Glucose; Body Weight; Coronary Circulation; Coronary Vessels; Diabetes Mellitus, Type 2; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Exercise Therapy; Hyperglycemia; Insulin; Mice; Microcirculation; Nitric Oxide; Oxidative Stress; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2008 |
Acceleration of lipid peroxidation in alpha-tocopherol transfer protein-knockout mice following the consumption of drinking water containing a radical initiator.
To assess the antioxidative role of vitamin E (VE) in a mouse model of severe VE deficiency by using biomarkers, alpha-tocopherol transfer protein (alpha-TTP(-/-))-knockout mice were maintained on a VE-deficient diet for 28 weeks [KO group, n = 6]. Wild-type C57BL/6 mice were maintained on a diet containing 0.002% alpha-tocopherol [WT group, n = 6]. The animals were housed individually in a metabolic cage from the age of 9 weeks (Week 0) to 27 weeks. Urine was collected every week, and the levels of total hydroxyoctadecadienoic acid (tHODE), 7-hydroxycholesterol (t7-OHCh), and 8-iso-prostaglandin F(2alpha)(t8-isoPGF(2alpha)), which are biomarkers for lipid peroxidation, were measured by gas chromatography (GC)-mass spectrometry. From the age of 21 weeks (Week 12), three mice in each group were provided drinking water containing the water-soluble radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) until the end of the study (Week 19). Blood and tissue samples were collected, and the levels of the abovementioned biomarkers therein were assessed. AIPH consumption clearly elevated the plasma and erythrocyte levels of tHODE and t8-isoPGF(2alpha) in both the WT and KO groups except for the erythrocyte level of tHODE in the WT group. Furthermore, this elevation was more prominent in the KO group than in the WT group. Interestingly, AIPH consumption reduced the stereoisomer ratio of HODE (ZE/EE), which is reflective of the efficacy of a compound as an antioxidant in vivo; this suggests that free radical-mediated oxidation reduces the antioxidant capacity in vivo. The urine levels of tHODE, t7-OHCh, and t8-isoPGF(2alpha) tended to increase with AIPH consumption, but these individual levels fluctuated. It was clearly demonstrated by the proposed biomarkers that maintaining alpha-TTP(-/-) mice on a VE-deficient diet results in a severe VE deficiency and promotes lipid peroxidation. Topics: alpha-Tocopherol; Animals; Azo Compounds; Biomarkers; Carrier Proteins; Diet; Dinoprost; Disease Models, Animal; Erythrocytes; Fatty Acids, Unsaturated; Free Radicals; Hydroxycholesterols; Imidazoles; Lipid Peroxidation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Time Factors; Tissue Distribution; Vitamin E Deficiency; Water Supply | 2008 |
Ramipril improves oxidative stress-related vascular endothelial dysfunction in db/db mice.
Endothelial dysfunction often precedes Type 2 diabetes-associated cardiovascular complications. One important cause of endothelial dysfunction is oxidative stress, which can lead to reduced nitric oxide (NO) bioavailability. In this study, we examined the effects of ramipril (an angiotensin-converting enzyme inhibitor, ACEI) on reactive oxygen species (ROS) production and endothelium-dependent vasodilation using a Type 2 diabetic (db/db) murine model. Plasma concentration of 8-isoprostane ([8-isoP]) was measured and used as an indication of the amount of ROS production. Six weeks of ramipril (10 mg/kg/day) treatment significantly reduced [8-isoP] and improved acetylcholine(ACh)-induced vasodilation in db/db mice without altering responses in wild-type (WT) mice. Responsiveness of smooth muscle cells to NO, assessed by sodium nitroprusside-induced vasodilation, was not different between db/db and WT mice regardless of ramipril or vehicle treatment. Our results suggest that ramipril specifically improved endothelium-dependent vasodilation in Type 2 diabetic mice, possibly by reducing ROS levels. Topics: Acetylcholine; Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Biomarkers; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Male; Mice; Mice, Inbred Strains; Muscle, Smooth, Vascular; Nitric Oxide; Nitroprusside; Oxidative Stress; Ramipril; Reactive Oxygen Species; Time Factors; Vasodilation; Vasodilator Agents | 2008 |
Altered TP receptor function in isolated, perfused kidneys of nondiabetic and diabetic ApoE-deficient mice.
Early manifestations of kidney disease occur in atherosclerosis and activation of TP (thromboxane A(2)) receptors is implicated in atherosclerotic, diabetes, and renal diseases. The purpose of the present study was to analyze, in isolated, perfused mouse kidneys, the participation of TP receptors in renal vasoconstrictions and vasodilatations. In kidneys, taken from wild-type C57BL6, apolipoprotein E-deficient (ApoE-KO) and diabetic ApoE-KO mice, changes in perfusion pressure were recorded. Constrictions to TP receptor ligands U 46619, arachidonic acid, PGH(2), and 8-iso-PGF(2alpha), but not those to angiotensin II, endothelin, or norepinephrine, were inhibited by the selective TP receptor antagonist Triplion (S 18886; 10 nM). Acetylcholine and prostacyclin evoked biphasic responses during methoxamine constrictions; the constrictor part was blocked by Triplion. In ApoE-KO mouse kidneys, compared with C57BL6, a specific decrease in norepinephrine response and no modification in dilator responses were observed. In diabetic ApoE-KO mouse kidneys, constrictions to U 46619 and those to 8-iso-PGF(2alpha) were significantly and selectively augmented, without modification in the expression of the TP receptor, and again without any significant change in vasodilator activity. Thus TP receptors are functional, and their activation is not involved in norepinephrine, endothelin, and angiotensin II vasoconstrictions but is implicated in the unusual vasoconstrictions to acetylcholine and prostacyclin. Increased responsiveness of TP receptors occurs in diabetic ApoE-KO mouse kidneys. Thus early changes in TP receptor-mediated vasoconstrictor activity may participate in the development of kidney disease in atherosclerosis and diabetes. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Animals; Apolipoproteins E; Atherosclerosis; Diabetes Mellitus, Experimental; Dinoprost; Disease Models, Animal; Epoprostenol; Kidney; Male; Methoxamine; Mice; Mice, Inbred C57BL; Mice, Knockout; Naphthalenes; Propionates; Receptors, Thromboxane A2, Prostaglandin H2; Streptozocin; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2008 |
Tetradecylthioacetic acid prevents the inflammatory response in two-kidney, one-clip hypertension.
ANG II promotes inflammation through nuclear factor-kappaB (NF-kappaB)-mediated induction of cytokines and reactive oxygen species (ROS). The aim of the present study was to examine the effect of tetradecylthioacetic acid (TTA), a modified fatty acid, on NF-kappaB, proinflammatory markers, ROS, and nitric oxide (NO) production in two-kidney, one-clip (2K1C) hypertension. The 2K1C TTA-treated group had lower blood pressure (128 +/- 3 mmHg) compared with 2K1C nontreated (178 +/- 5 mmHg, P < 0.001). The p50 and p65 subunits of NF-kappaB were higher in the clipped kidney (0.44 +/- 0.01 and 0.22 +/- 0.01, respectively) compared with controls (0.25 +/- 0.03 and 0.12 +/- 0.02, respectively, P < 0.001). In the 2K1C TTA-treated group, these values were similar to control levels. The same pattern of response was seen in the nonclipped kidney. In 2K1C hypertension, cytokines plasma were higher than in control: TNF-alpha was 13.5 +/- 2 pg/ml (P < 0.03), IL-1beta was 58.8 +/- 10 pg/ml (P = 0.003), IL-6 was 210 +/- 33 pg/ml (P < 0.001), and monocyte chemoattractant protein-1 was 429 +/- 21 pg/ml (P = 0.04). In the 2K1C TTA-treated group, these values were similar to controls, and the same pattern was seen in the clipped kidney. Clipping increased 8-iso-PGF-2alpha (P < 0.01) and decreased NO production (P < 0.01 vs. control) in the urine. TTA treatment normalized these values. NO production was also lower in clipped and nonclipped kidney (P < 0.001). After TTA treatment, these values were similar to controls. The results indicate that TTA has a potent anti-inflammatory effect in 2K1C by inhibition of p50/p65 NF-kappaB subunit activation, reduction of cytokines production and ROS, and enhanced NO production. Topics: Animals; Body Weight; Chemokine CCL2; Dinoprost; Disease Models, Animal; Eating; Free Radical Scavengers; Hypertension, Renal; Interleukin-1beta; Interleukin-6; Kidney Cortex; Male; Nephritis; NF-kappa B p50 Subunit; Nitrates; Nitric Oxide; Nitrites; Rats; Rats, Wistar; Reactive Oxygen Species; Sodium, Dietary; Sulfides; Surgical Instruments; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2008 |
A voluntary oral-feeding rat model for pathological alcoholic liver injury.
The variety of animal models used in the study of alcoholic liver disease reflects the formidable task of developing a model that replicates the human disease. We show that oral feeding of fatty acids derived from fish oil and ethanol induces fatty liver, necrosis, inflammation, and fibrosis. Together with the study of oxidative and nitrosative stress markers, cytokines, proteasome function, and protein studies, this model has provided an inexpensive and technically simple method of establishing pathological alcoholic liver injury. Topics: Administration, Oral; Alanine Transaminase; Alcohol Drinking; Animals; Blotting, Western; Central Nervous System Depressants; Chymotrypsin; Cytochrome P-450 CYP2E1; Dinoprost; Disease Models, Animal; Electrophoretic Mobility Shift Assay; Endotoxins; Ethanol; Fatty Acids; Fatty Liver, Alcoholic; Female; Immunohistochemistry; Liver; Liver Diseases, Alcoholic; Oxidative Stress; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Self Administration; Specimen Handling; Staining and Labeling; Thiobarbituric Acid Reactive Substances | 2008 |
Placental oxidative stress in a rat model of preeclampsia.
The onset of preeclampsia is associated with increased maternal insult that could affect placental function. By increasing sodium intake (0.9% or 1.8% NaCl in drinking water) during the last week of gestation in the rat, we developed an animal model that shows many characteristics of preeclampsia such as increased blood pressure, decreased circulatory volume and diminished activity of the renin-angiotensin-aldosterone system. The aim of the present study was to determine in this model whether maternal perturbations in pregnancy lead to placental oxidative stress. Sprague-Dawley pregnant rats receiving salted-water were compared to not-supplemented pregnant rats. Markers of oxidative stress, ensuing cell death, and changes in the production of vasoactive substances (prostanoids: thromboxane, TxB(2); and prostacyclin, PGF(1alpha)) and the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) were measured in the placenta. In tissue from pregnant rats on 1.8% NaCl supplement, 8-iso-PGF(2alpha) levels, TxB(2)/6-keto-PGF(1alpha) ratios, total TNF-alpha RNA expression, as well as the apoptotic index (Bax/Bcl-2 ratio) and endothelial nitric oxide synthase protein expression increase while total glutathione content decreases. These findings demonstrate that maternal insult during gestation induced an imbalance in the oxidative environment in the placenta favouring oxidation. This was accompanied by an increased synthesis of vasoconstrictive substances and TNF-alpha by the placenta as well as the increased rate of placental cell apoptosis. Topics: Animals; Apoptosis; Dinoprost; Disease Models, Animal; Female; Gene Expression; Glutathione; Nitric Oxide Synthase Type III; Oxidative Stress; Placenta; Pre-Eclampsia; Pregnancy; Prostaglandins; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2007 |
Potent free radical scavenger, edaravone, suppresses oxidative stress-induced endothelial damage and early atherosclerosis.
Effects of potent free radical scavenger, edaravone, on oxidative stress-induced endothelial damage and early atherosclerosis were investigated using animal models and cultured cells.. Endothelial apoptosis was induced by 5-min intra-arterial exposure of a rat carotid artery with 0.01 mmol/L H(2)O(2). Edaravone treatment (10mg/kg i.p.) for 3 days suppressed endothelial apoptosis, as evaluated by chromatin staining of en face specimens at 24h, by approximately 40%. Similarly, edaravone dose-dependently inhibited H(2)O(2)-induce apoptosis of cultured endothelial cells in parallel with the inhibition of 8-isoprostane formation, 4-hydroxy-2-nonenal (4-HNE) accumulation and VCAM-1 expression. Next, apolipoprotein-E knockout mice were fed a high-cholesterol diet for 4 weeks with edaravone (10mg/kg i.p.) or vehicle treatment. Edaravone treatment decreased atherosclerotic lesions in the aortic sinus (0.18+/-0.01 to 0.09+/-0.01 mm(2), P<0.001) and descending aorta (5.09+/-0.86 to 1.75+/-0.41 mm(2), P<0.05), as evaluated by oil red O staining without influence on plasma lipid concentrations or blood pressure. Dihydroethidium labeling and cytochrome c reduction assay showed that superoxide anions in the aorta were suppressed by edaravone. Also, plasma 8-isoprostane concentrations and aortic nitrotyrosine, 4-HNE and VCAM-1 contents were decreased by edaravone treatment.. These results suggest that edaravone may be a useful therapeutic tool for early atherosclerosis, pending the clinical efficacy. Topics: Aldehydes; Animals; Antipyrine; Apolipoproteins E; Apoptosis; Atherosclerosis; Cells, Cultured; Cholesterol, Dietary; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Edaravone; Endothelial Cells; Free Radical Scavengers; Hydrogen Peroxide; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidants; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Time Factors; Tyrosine; Vascular Cell Adhesion Molecule-1 | 2007 |
Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress.
Obesity is independently associated with increased cardiovascular risk. However, since established obesity clusters with various cardiovascular risk factors, configuring the metabolic syndrome, the early effects of obesity on vascular function are still poorly understood. The current study was designed to evaluate the effect of early obesity on coronary endothelial function in a new animal model of swine obesity. As to method, juvenile domestic crossbred pigs were randomized to either high-fat/high-calorie diet (HF) or normal chow diet for 12 wk. Coronary microvascular permeability and abdominal wall fat were determined by using electron beam computerized tomography. Epicardial endothelial function and oxidative stress were measured in vitro. Systemic oxidative stress, renin-angiotensin activity, leptin levels, and parameters of insulin sensitivity were evaluated. As a result, HF pigs were characterized by abdominal obesity, hypertension, and elevated plasma lysophosphatidylcholine and leptin in the presence of increased insulin sensitivity. Coronary endothelium-dependent vasorelaxation was reduced in HF pigs and myocardial microvascular permeability increased compared with those values in normal pigs. Systemic redox status in HF pigs was similar to that in normal pigs, whereas the coronary endothelium demonstrated higher content of superoxide anions, nitrotyrosine, and NADPH-oxidase subunits, indicating increased tissue oxidative stress. In conclusion, the current study shows that early obesity is characterized by increased vascular oxidative stress and endothelial dysfunction in association with increased levels of leptin and before the development of insulin resistance and systemic oxidative stress. Vascular dysfunction is therefore an early manifestation of obesity and might contribute to the increased cardiovascular risk, independently of insulin resistance. Topics: Animals; Blood Pressure; Capillary Permeability; Coronary Vessels; Dietary Fats; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; Hypertension; Intra-Abdominal Fat; Leptin; Lipids; Microcirculation; Nitric Oxide; Obesity; Oxidative Stress; Random Allocation; Superoxides; Swine; Tomography, X-Ray Computed; Vasoconstrictor Agents; Vasodilator Agents | 2007 |
Synergistic actions of enalapril and tempol during chronic angiotensin II-induced hypertension.
Experiments were designed to test the hypothesis that antioxidant treatment would increase the anti-hypertensive actions of endogenous kinins during angiotensin converting enzyme (ACE) inhibition. Four groups of rats, all given angiotensin II (Ang II) for 2 weeks, were studied: 1) control, 2) enalapril, 3) tempol or 4) both tempol and enalapril. Ang II significantly increased systolic blood pressure (BP) when compared with the baseline (170+/-8 vs. 128+/-4 mm Hg, P<0.05). Neither enalapril nor tempol alone was able to attenuate the elevation in BP (165+/-7 and 164+/-6 mm Hg, respectively). In contrast, combined administration of tempol and enalapril prevented the increase in BP (137+/-5 mm Hg). Plasma 8-isoprostane increased in Ang II-infused rats when compared with control untreated rats (69+/-14 vs. 23+/-0.5 pg/ml, P<0.05). Tempol alone or tempol plus enalapril significantly attenuated the increase in plasma 8-isoprostane (29+/-6 and 34+/-7 pg/ml, respectively). In additional experiments, we used the bradykinin B(2) antagonist, icatibant to determine if increased B(2) receptor contributes to the anti-hypertensive effect of combined tempol and enalapril in Ang II-infused rats. Icatibant decreased the ability of this combination to lower arterial pressure. Additionally, a significant increase in B(1) receptor protein expression in renal cortex of Ang II-infused rats was observed compared to control suggesting that bradykinin receptor activation could account for the effect of enalapril to enhance the actions of tempol. These data support the hypothesis that combined reduction of superoxide along with enhanced endogenous kinins may facilitate blood pressure lowering in Ang II hypertension. Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Antioxidants; Blood Pressure; Bradykinin; Chronic Disease; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Enalapril; Hydrogen Peroxide; Hypertension; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley; Receptors, Bradykinin; Spin Labels; Superoxides; Time Factors | 2007 |
Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats.
Inflammatory processes may play a pivotal role in the pathogenesis of cerebrovascular injury in salt-loaded, stroke-prone, spontaneously hypertensive rats (SHRSP). Thromboxane A2 (TP) receptor stimulation by 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) is involved in the process of vascular inflammation.. In the present study, we examined the involvement of TP receptor in the development of cerebrovascular damage in salt-loaded SHRSP.. Nine-week-old SHRSP were fed a 0.4% NaCl or a 4% NaCl diet with or without ONO-8809 treatment (a TP receptor antagonist) for 5 weeks. Blood pressure, mortality, and the parameters of cerebrovascular inflammation and damage were compared between the groups. Moreover, we examined the effect of 8-iso-PGF2alpha infusion on cerebrovascular injury of SHRSP.. High salt intake in SHRSP significantly increased blood-brain barrier impairment and early mortality, which were suppressed by ONO-8809 treatment independent of changes in blood pressure. Salt loading also significantly increased superoxide production in basilar arteries of SHRSP, which was suppressed by ONO-8809 treatment. Macrophage accumulation and matrix metalloproteinase-9 (MMP-9) activity in the stroke-negative area in the contralateral cerebral cortex to the stroke lesion of salt-loaded SHRSP and 8-iso-PGF2alpha-treated SHRSP were significantly reduced by ONO-8809 treatment. The ONO-8809 treatment prevented thinning of the vessel layer in cerebral arterioles of salt-loaded SHRSP and 8-iso-PGF2alpha-treated SHRSP.. These results suggest that TP receptor stimulation by 8-iso-PGF2alpha may involve salt loading-induced stroke through activation of cerebrovascular inflammation and damage. Topics: Analysis of Variance; Animals; Basilar Artery; Biomarkers; Blood Pressure; Blood-Brain Barrier; Bridged Bicyclo Compounds; Cerebral Arteries; Cerebral Cortex; Chemokine CCL2; Dinoprost; Disease Models, Animal; Fatty Acids, Monounsaturated; Macrophages; Male; Matrix Metalloproteinase 9; Rats; Rats, Inbred SHR; Receptors, Thromboxane A2, Prostaglandin H2; Sodium Chloride, Dietary; Stroke; Superoxides; Time Factors; Tunica Media; Vasoconstrictor Agents | 2007 |
Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice.
Recent studies have uncovered various pleiotrophic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase-inhibiting drugs (statins). Several studies have identified a beneficial effect of statins on diabetic nephropathy; however, the molecular mechanisms are unclear. In this study, we show that statin ameliorates nephropathy in db/db mice, a rodent model of type 2 diabetes, via downregulation of NAD(P)H oxidase NOX4, which is a major source of oxidative stress in the kidney. Pitavastatin treatment for 2 weeks starting at 12 weeks of age significantly reduced albuminuria in the db/db mice concomitant with a reduction of urinary 8-hydroxy-2'-deoxyguanosine and 8-epi-prostaglandin F(2alpha). Immunohistochemical analysis found increased amounts of 8-hydroxy-2'-deoxyguanosine and NOX4 protein in the kidney of db/db mice. Quantitative reverse transcription-polymerase chain reaction also showed increased levels of NOX4 mRNA. Pitavastatin normalized all of these changes in the kidneys of diabetic animals. Additionally, 12-week treatment with the statin completely normalized the levels of transforming growth factor-beta1 and fibronectin mRNA as well as the mesangial expansion characteristic of diabetic nephropathy. Our study demonstrates that pitavastatin ameliorates diabetic nephropathy in db/db mice by minimizing oxidative stress by downregulating NOX4 expression. These findings may provide insight into the mechanisms of statin therapy in early stages of diabetic nephropathy. Topics: 8-Hydroxy-2'-Deoxyguanosine; Albuminuria; Animals; Blood Glucose; Body Weight; Cell Proliferation; Deoxyguanosine; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dinoprost; Disease Models, Animal; Down-Regulation; Fibronectins; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lipids; Male; Mesangial Cells; Mice; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; Quinolines; RNA, Messenger; Time Factors; Transforming Growth Factor beta1 | 2007 |
A neurokinin-1 receptor antagonist that reduces intra-abdominal adhesion formation decreases oxidative stress in the peritoneum.
Oxidative stress has been implicated in intra-abdominal adhesion formation. Substance P, a neurokinin-1 receptor (NK-1R) ligand, facilitates leukocyte recruitment and reactive oxygen species (ROS) generation. We have shown in a rat model of adhesion formation that intraperitoneal administration of a NK-1R antagonist at the time of abdominal operation reduces postoperative adhesion formation. Thus we determined the effects of NK-1R antagonist administration on peritoneal leukocyte recruitment and oxidative stress within 24 h of surgery. Adhesions were induced in Wistar rats randomly assigned to receive the antagonist or vehicle intraperitoneally. Peritoneal tissue was isolated at 2, 4, 6, and 24 h after surgery for analysis of the oxidative stress biomarkers 8-isoprostane (8-IP), protein carbonyl, NADPH oxidase, myeloperoxidase (MPO), and ICAM-1 and VCAM-1 mRNAs. Total antioxidant capacity of peritoneal fluid was also determined. MPO, NADPH oxidase, 8-IP, and protein carbonyl were elevated (P < 0.05) by 6 h. ICAM-1 mRNA was elevated (P < 0.05) by 2 h, whereas VCAM-1 levels decreased (P < 0.05) at 24 h. The NK-1R antagonist delayed the MPO rise and reduced (P < 0.05) 8-IP levels by 6 h and ICAM-1 mRNA, VCAM-1 mRNA, and protein carbonyl at 2 h. The antagonist also increased (P < 0.05) the antioxidant capacity of peritoneal fluid at all time points. These data further support a role for oxidative stress in adhesion formation and suggest that the NK-1R antagonist may limit adhesions, in part, by reducing postoperative oxidative stress through an inhibition of neutrophil recruitment and an increase in peritoneal fluid antioxidant capacity. Topics: Animals; Antioxidants; Bridged Bicyclo Compounds, Heterocyclic; Dinoprost; Disease Models, Animal; Gastrointestinal Agents; Intercellular Adhesion Molecule-1; Laparotomy; Male; NADPH Oxidases; Neurokinin-1 Receptor Antagonists; Neutrophil Infiltration; Oxidative Stress; Peritoneal Diseases; Peritoneum; Peroxidase; Protein Carbonylation; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, Neurokinin-1; RNA, Messenger; Substance P; Time Factors; Tissue Adhesions; Vascular Cell Adhesion Molecule-1 | 2007 |
Effective microorganism fermentation extract (EM-X) attenuates airway hyperreactivity and inflammation through selective inhibition of the TH2 response independently of antioxidant activity.
The effective microorganism fermentation extract (EM-X) is an antioxidant cocktail derived from the fermentation of plant material with effective microorganisms, and its clinical application is being increasingly scrutinized. In the current study, the antiasthmatic effect of EM-X was investigated using a mouse model. Inhalation of EM-X during OVA challenge resulted in a significant reduction in airway hyperreactivity (AHR) and airway recruitment of leukocytes including eosinophils. However, the level of 8-isoprostane in bronchoalveolar lavage fluid (BALF), a marker of oxidative stress in asthmatic patients, was unaltered by EM-X inhalation. Instead, ELISA data showed that levels of IL-4, IL-5 and IL-13 in BALF or lung tissues were significantly lower in EM-X-inhaling mice than in the control mice, but not the IFN-gamma level. A considerably lower amount of Ag-specific IgE and IgG1 was detected in the serum of EM-X-inhaling mice than in the serum of the controls, whereas their IgG2a secretion was similar. In addition, Ag-specific ex vivo IL-4, IL-5 and IL-13 production of draining lymph node cells was markedly diminished by EM-X inhalation, but not IFN-gamma. These data clearly show that inhaled EM-X suppresses type 2 helper T (TH2), but not type 1 helper T (TH1), response. In conclusion, inhalation of EM-X attenuates AHR and airway inflammation which results from selective inhibition of the TH2 response to allergen, but independently of antioxidant activity. Our data also suggest that EM-X may be effectively applied for control of allergic asthma. Topics: Administration, Inhalation; Animals; Anti-Asthmatic Agents; Antigens; Antioxidants; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Dinoprost; Disease Models, Animal; Female; Immunoglobulins; Inflammation; Lung; Lymph Nodes; Mice; Mice, Inbred BALB C; Plant Extracts; Th2 Cells | 2007 |
IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice.
Whereas growth factors, via their ability to stimulate vascular smooth muscle cell (VSMC) proliferation and migration, have been thought to play a permissive role in atherosclerosis initiation and progression, the role of insulin-like growth factor-1 (IGF-1) is unknown. Here we report for the first time that IGF-1 infusion decreased atherosclerotic plaque progression in ApoE-deficient mice on a Western diet.. ApoE-null mice (8 weeks) were infused with vehicle or recombinant human IGF-1 and fed a high-fat diet for 12 weeks. Analysis of aortic sinuses revealed that IGF-1 infusion decreased atherosclerotic plaque progression and macrophage infiltration into lesions. Furthermore, IGF-1 decreased vascular expression of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, reduced aortic superoxide formation and urinary 8-isoprostane levels, and increased aortic pAkt and eNOS expression and circulating endothelial progenitor cells, consistent with an antiinflammatory, antioxidant, and prorepair effect on the vasculature.. Our data indicate that an increase in circulating IGF-1 reduces vascular inflammatory responses, systemic and vascular oxidant stress and decreases atherosclerotic plaque progression. These findings have major implications for the treatment of atherosclerosis. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Aorta; Apolipoproteins E; Atherosclerosis; Cells, Cultured; Dietary Fats; Dinoprost; Disease Models, Animal; Disease Progression; Endothelial Cells; Humans; Inflammation; Insulin-Like Growth Factor I; Interleukin-6; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Recombinant Proteins; RNA, Messenger; Stem Cells; Superoxides; Tumor Necrosis Factor-alpha | 2007 |
Attenuation of cardiac hypertrophy in carnitine-deficient juvenile visceral steatosis (JVS) mice achieved by lowering dietary lipid.
We examined the development of cardiac hypertrophy in juvenile visceral steatosis (JVS) mice, a model of systemic carnitine deficiency, by varying the amount of lipid in the diet. Cardiac hypertrophy was markedly attenuated by decreasing soy bean oil (SBO) from 5% (w/w) to 1%. Triglyceride contents of the ventricles of JVS mice fed 1% SBO were significantly lower than in JVS mice fed 5% SBO. The addition of medium-chain triglycerides metabolically utilized by JVS mice did not affect the development of cardiac hypertrophy. On the other hand, the mRNA levels of atrial natriuretic peptide and skeletal alpha-actin, which are related to cardiac hypertrophy, were also attenuated by decreasing lipid in the diet. Adenylate energy charge and creatine phosphate in the heart of JVS mice at the early stage of hypertrophy were not significantly different from control mice given the same laboratory chow (4.6% of lipid). Although urinary prostaglandin F(2alpha) levels were found to be increased in JVS mice at 15 days of age when they developed cardiac hypertrophy, administration of aspirin was not efficacious. We, therefore, propose that the proportion of lipid in the diet is important in the development of cardiac hypertrophy in carnitine-deficient JVS mice, and that this is not related to prostaglandin formation. Topics: Animals; Aspirin; Carnitine; Diet; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypertrophy, Left Ventricular; Lipids; Male; Mice; Mice, Mutant Strains; Vitamin B Deficiency | 2006 |
Selective effect of conjugated linoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice.
Research suggests that conjugated linoleic acid (CLA) may inhibit atherosclerosis, but there are contradictory results in different animal models fed heterogeneous mixtures of CLA isomers. This study addressed the hypothesis that the individual CLA isomers may exert different atherogenic properties. ApoE(-/-) mice were fed isocaloric, isonitrogenous westernized diets containing 0.15% cholesterol and enriched with 1% (w/w) cis-9,trans-11-CLA (c9,t11-CLA), trans-10,cis-12-CLA (t10,c12-CLA) or linoleic acid (control diet) for 12 weeks. At the end of the dietary intervention, the effects of CLA isomers on the development of atherosclerotic vascular lesions, lipid metabolism, inflammation and oxidative stress were assessed. The t10,c12-CLA diet had a profound pro-atherogenic effect, whereas c9,t11-CLA impeded the development of atherosclerosis. En face aortic lesion assessment showed more dorsal and lumbar extensions presenting atherosclerotic foci after the t10,c12-CLA diet. Furthermore, animals fed t10,c12-CLA had pronounced hyperlipidemia, higher 8-iso-prostaglandin F(2alpha) levels, higher vulnerable atherosclerotic plaque with a lower smooth muscle and fibre contents and higher macrophage content and activation, assayed as plasma chitotriosidase compared to the control or c9,t11-CLA dietary groups. Plasma chitotriosidase activity was more closely associated with the extent of the plaque than with MOMA staining or than monocyte chemoattractant protein-1 levels. Our results demonstrate that CLA isomers differentially modulate the development of atherosclerosis, c9,t11-CLA impedes, whereas t10,c12-CLA promotes atherosclerosis. These opposing effects may be ascribed to divergent effects on lipid, oxidative, inflammatory and fibro muscular components of this pathology. Plasma chitotriosidase is a better indicator of dietary fat interventions that alter plaque monocyte activity in this murine model. Topics: Animals; Aorta; Apolipoproteins E; Aryldialkylphosphatase; Atherosclerosis; Diet, Atherogenic; Dinoprost; Disease Models, Animal; Disease Progression; Enzyme-Linked Immunosorbent Assay; Hexosaminidases; Isomerism; Linoleic Acids, Conjugated; Male; Mice; Mice, Knockout; Muscle, Smooth, Vascular; Oxidative Stress | 2006 |
Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.
Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. Topics: Animals; Animals, Newborn; Apoptosis; Atrophy; Body Temperature; Brain; Brain Infarction; Carotid Stenosis; Caspase 3; Caspases; Dinoprost; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypoxia-Ischemia, Brain; Male; Motor Activity; Niacinamide; Organ Size; Oxidative Stress; Rats; Rats, Sprague-Dawley; Treatment Outcome; Vitamin B Complex | 2006 |
Oxidant stress and blood pressure responses to angiotensin II administration in rats fed varying salt diets.
To examine the hypothesis that NAD(P)H oxidase (Nox)-derived superoxide generation is involved in the development of angiotensin II (ANG II)-induced hypertension, we evaluated the responses to ANG II infusion (65 ng/min; osmotic mini-pump) for 2 weeks in rats treated with or without apocynin (APO) (inhibitor of Nox subunits assembly) in drinking water (12 mmol/L). Rats were grouped according to their diets with varying salt content (normal salt [NS], 0.4%; high salt [HS], 8%; low salt [LS], 0.03%) given during the 2-week experimental period. The variation in salt intake did not alter mean arterial pressure (MAP, recorded via pre-implanted arterial catheter) but showed proportionate levels in urinary excretion rate of Isoprostaglandin(2alpha) (U(ISO)V; NS, 179 +/- 26; HS, 294 +/- 38; LS, 125 +/- 7 ng/kg/24 h). Treatment with ANG II increased MAP proportional to salt intake (NS, 126 +/- 3 to 160 +/- 5; HS, 116 +/- 4 to 184 +/- 5; LS, 125 +/- 1 to 154 +/- 5 mm Hg). However, ANG II increased U(ISO)V only in NS rats (250 +/- 19 ng/kg/24 h) but not in HS or LS rats. In response to ANG II, Nox subunits protein expression increased in HS but not in the NS or LS rats. Apocynin treatment partially ameliorated these changes in Nox proteins in HS rats but did not alter ANG II-induced increases in MAP or U(ISO)V. These data suggest that Nox activation may not be the sole factor or alternatively, that a constitutively active isoform of Nox is involved in oxidative stress mechanism that is associated with dietary salt or ANG II-induced hypertension. Topics: Acetophenones; Angiotensin II; Animals; Blood Pressure; Blotting, Western; Diet, Sodium-Restricted; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Hypertension; Infusions, Intravenous; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley; Thiobarbituric Acid Reactive Substances; Vasoconstrictor Agents | 2006 |
Myocardial protection using an omega-3 fatty acid infusion: quantification and mechanism of action.
Omega-3 fatty acids exhibit anti-inflammatory, antithrombotic, and antiarrhythmic properties. We investigated the extent and underlying mechanism of protection conferred by a pre-emptive omega-3 infusion in a model of regional cardiac ischemia-reperfusion injury.. New-Zealand White rabbits received either the omega-3 infusion or a control infusion of 0.9% saline (n = 14 in each group). The large marginal branch of the left coronary artery was occluded for 30 minutes, cardiac function was assessed during 3 hours of reperfusion, and infarct size was measured. Pretreatment-induced alterations in myocardial membrane fatty acid composition and intramyocardial heat shock protein 72 were additionally assessed (n = 5 in each group). Serum markers of myocardial membrane oxidative stress, malonaldehyde and 8-isoprostane, were also determined. Results are expressed as means +/- standard error of the mean and significance was tested with analysis of variance.. Pretreatment increased myocardial membrane omega-3 fatty acid content 5-fold, from 0.94% +/- 0.07% in controls to 5.38% +/- 0.44% in the omega-3 group (P < .01), and it produced a 225% elevation of levels of heat shock protein 72 (P = .019) before ischemia-reperfusion. This was associated with a 40% reduction in infarct size (P < .01). Whereas the reperfusion-induced rise in malonaldehyde levels was higher with omega-3 pretreatment, 10.2 +/-1.5 micromol/L versus 6.1 +/- 0.7 micromol/L in controls (P = .04), 8-isoprostanes showed a 9-fold reduction, 679 +/- 190 pg/mL in controls vs 74 +/- 45 pg/mL in the omega-3 group (P = .0077).. A pre-emptive omega-3 infusion significantly reduces infarct size through the dual mechanisms of upregulation of heat shock protein 72, a key preconditioning protein, and a dramatic increase in the omega-3 content of myocardial membranes, which appears to facilitate a shift in oxidant ischemia-reperfusion injury. Further study to optimally shorten the pretreatment regimen for this potentially acceptable infusion will now be pursued. Topics: Animals; Arachidonic Acid; Blotting, Western; Cell Membrane; Dinoprost; Disease Models, Animal; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fatty Acids, Omega-3; Fatty Acids, Unsaturated; HSP72 Heat-Shock Proteins; Immunohistochemistry; Infusions, Intravenous; Ischemic Preconditioning, Myocardial; Male; Malondialdehyde; Myocardial Reperfusion Injury; Myocardium; Oxidation-Reduction; Oxidative Stress; Rabbits; Up-Regulation; Ventricular Function, Left | 2006 |
Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline.
A number of animal models have been developed to investigate calcium oxalate (CaOx) nephrolithiasis. Ethylene glycol (EG)-induced hyperoxaluria in rats is most common, but is criticized because EG and some of its metabolites are nephrotoxic and EG causes metabolic acidosis. Both oxalate (Ox) and CaOx crystals are also injurious to renal epithelial cells. Thus, it is difficult to distinguish the effects of EG and its metabolites from those induced by Ox and CaOx crystals. This study was performed to investigate hydroxy-L-proline (HLP), a common ingredient of many diets, as a hyperoxaluria-inducing agent. In rats, HLP has been shown to induce CaOx nephrolithiasis in only hypercalciuric conditions. Five percent HLP mixed with chow was given to male Sprague-Dawley rats for 63 days, resulting in hyperoxaluria, CaOx crystalluria, and nephrolithiasis. Crystal deposits were surrounded by ED-1-positive inflammatory cells. Cell injury and death was followed by regeneration, as suggested by an increase in proliferating cell nuclear antigen-positive cells. Both osteopontin (OPN) and CD44 were upregulated. Staining for CD44 and OPN was intense in cells lining the tubules that contained crystals. Along with a rise in urinary Ox and lactate dehydrogenase, there were significant increases in 8-isoprostane and hydrogen peroxide excretion, indicating that the oxidative stress induced cell injury. Thus, HLP-induced hyperoxaluria alone can induce CaOx nephrolithiasis in rats. Topics: Animals; Calcium; Calcium Oxalate; Creatinine; Dinoprost; Disease Models, Animal; Gene Expression Regulation; Hyaluronan Receptors; Hydrogen Peroxide; Hydroxyproline; Hyperoxaluria; Immunohistochemistry; Kidney Calculi; Kidney Tubules; L-Lactate Dehydrogenase; Male; Osteopontin; Oxalates; Rats; Rats, Sprague-Dawley; Sialoglycoproteins | 2006 |
Effects of alpha tocopherol and probucol supplements on allergen-induced airway inflammation and hyperresponsiveness in a mouse model of allergic asthma.
We investigated the role of antioxidants in airway hyperresponsiveness to acetylcholine using young asthma model mice, which were sensitized and stimulated with ovalbumin.. The mice had been fed either a normal diet, an alpha-tocopherol-supplemented diet or a probucol-supplemented diet 14 days before the first sensitization. They were immunized with antigen at intervals of 12 days and, starting from 10 days after the second immunization, they were exposed to antigen 3 times every 4th day using an ultrasonic nebulizer. Twenty-four hours after the last antigen inhalation, airway responsiveness to acetylcholine was measured and bronchoalveolar lavage fluid (BALF) was collected. A blood and lung tissue study was also carried out.. Twenty-four hours after the last antigen challenge, both IL-4 and IL-5 in the BALF of alpha-tocopherol-supplemented mice were significantly decreased. The IL-5 level in probucol-supplemented mice was also decreased, but there was no difference in IL-4 levels. The serum IgE level was decreased in probucol-supplemented mice. Differential cell rates of the fluid revealed a significant decrease in eosinophils due to antioxidant supplementation. Airway hyperresponsiveness to acetylcholine was also repressed in antioxidant-supplemented mice. In histological sections of lung tissue, inflammatory cells and mucus secretion were markedly reduced in antioxidant-supplemented mice. We investigated the antioxidant effect on our model mice by examining 8-isoprostane in BALF and lung tissue, and acrolein in BALF; however, our experiment gave us no evidence of the antioxidant properties of either alpha-tocopherol or probucol contributing to the reduction of airway inflammation.. These findings indicate that alpha-tocopherol and probucol suppress allergic responses in asthma model mice, although these two drugs cause suppression in different ways that are unrelated to antioxidation. Topics: Acrolein; Allergens; alpha-Tocopherol; Animals; Antioxidants; Asthma; Bronchial Hyperreactivity; Bronchial Provocation Tests; Bronchoalveolar Lavage Fluid; Dietary Supplements; Dinoprost; Disease Models, Animal; Eosinophils; Female; Hypersensitivity; Immunoglobulin E; Interleukin-4; Interleukin-5; Mice; Mice, Inbred BALB C; Ovalbumin; Oxidative Stress; Probucol | 2006 |
Combined endothelial and myocardial protection by endothelin antagonism enhances transplant allograft preservation.
Endothelin is a potent inflammatory peptide associated with myocardial dysfunction, coronary vasculopathy, and reduced survival after cardiac transplantation. We hypothesized that endothelin antagonism during cardiac allograft storage would limit early endothelial dysfunction and improve myocardial performance after transplantation.. Porcine orthotopic transplantations (n = 16) were performed after 6 hours of ischemic storage. Intermittent donor blood perfusion (control, n = 8) was compared with donor blood perfusion enhanced with 100 micromol/L of an endothelin receptor blocker (n = 8). Left ventricular performance was assessed after caval occlusion with a Millar micromanometer and conductance catheter. Coronary endothelial function was assessed in vitro with a macrovascular tissue bath apparatus. Myocardial endothelin, tumor necrosis factor alpha, and transforming growth factor beta protein expression were determined. Oxidative stress was inferred on the basis of 8-isoprostane levels, and myocardial metabolism was inferred on the basis of the extraction or production of oxygen, acid, and lactate by the heart.. Endothelial function was diminished 48 hours after transplantation but not earlier. Endothelin receptor blocker treatment during preservation limited coronary endothelial dysfunction 48 hours after reperfusion ( P = .001). Weaning from cardiopulmonary bypass and left ventricular performance after transplantation was improved in endothelin receptor blocker-treated hearts (P = .02). Myocardial endothelin expression was equivalent in both groups and increased during reperfusion after transplantation (P = .001). Tumor necrosis factor alpha levels decreased with endothelin receptor blocker treatment (P = .02), whereas transforming growth factor beta levels did not change (P = .86). 8-Isoprostane, oxygen, acid, and lactate levels were similar, suggesting that oxidative stress and metabolism were not important mechanisms of benefit.. Endothelin accumulates during allograft storage and contributes to endothelial and myocardial dysfunction after transplantation. Endothelin blockade during allograft preservation limits endothelial injury and enhances ventricular recovery after transplantation. Topics: Animals; Biomarkers; Coronary Vessels; Cytokines; Dinoprost; Disease Models, Animal; Endothelin Receptor Antagonists; Endothelin-1; Endothelium; Endothelium, Vascular; Female; Heart Transplantation; Models, Cardiovascular; Myocardium; Organ Preservation; Oxidative Stress; Receptors, Endothelin; Stroke Volume; Swine; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; Ventricular Function, Left | 2005 |
Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea.
The aim of this study was to investigate the involvement of oxidative stress and apoptosis in an animal model of Meniere's disease. Endolymphatic hydrops (ELH) is generally accepted as the decisive histological characteristic of Meniere's disease. Closure of the endolymphatic duct (Kimura's method) was used to induce endolymphatic hydrops in guinea pigs. Sham-operated animals served as controls. After 4 weeks the animals operated showed a significant elevation of the hearing thresholds as measured by audiometric brainstem responses (ABR) pre- and postoperatively. Immediately after the second ABR measurement, the animals were sacrificed for further immunohistological examinations of the inner ear with specific antibodies to active caspase-3 (cas-3) as a marker for apoptosis and antibodies to 8-isoprostane (8-iso) and nitrotyrosine (NT) as indicators of oxidative stress. Compared with the sham-operated controls, hydropic cochleae showed strong immunostaining for both oxidative stress markers in spiral ganglion cells, in the blood-vessels and fibrocytes of the lateral wall, as well as in supporting cells of the organ of Corti. Activation of cas-3 in spiral ganglion cells and the lateral wall was found exclusively in hydropic cochleae. Our findings suggest that oxidative stress is involved in the development of endolymphatic hydrops and may lead to cellular damage which induces apoptosis by activation of cas-3. Apoptotic cell death might contribute to the sensorineural hearing loss found in later stages of Meniere's disease. Topics: Animals; Apoptosis; Audiometry; Caspase 3; Caspases; Cochlea; Cochlear Diseases; Dinoprost; Disease Models, Animal; Endolymphatic Hydrops; Enzyme Activation; Evoked Potentials, Auditory, Brain Stem; Guinea Pigs; Immunohistochemistry; Meniere Disease; Oxidative Stress; Spiral Ganglion; Staining and Labeling; Tyrosine | 2005 |
Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice.
Oxidative stress and the gene expression at the transcriptional level of antioxidant enzymes were investigated in two models of diabetes in mice. We used KKAy mice as a model of obese insulin-resistant diabetes, and streptozotocin-induced diabetic mice (STZ mice) as a model of insulin-deficient diabetes. C57BL mice and saline-injected ICR mice were used as the respective non-diabetic controls. To assess oxidative damage, plasma malonedialdehyde (MDA), urine 8-isoprostane and 8-hydroxy deoxyguanosine (8-OHdG) were measured. The mRNA expression of antioxidant enzymes, superoxide dismutase 1 (SOD-1) and glutathione peroxidase 1 (GPx-1) in the kidney and heart were quantified using a real-time polymerase chain reaction. The KKAy mice demonstrated moderate hyperglycemia and hyperlipidemia, and the STZ mice showed severe hyperglycemia and hypolipidemia. The KKAy mice, but not the STZ mice, showed elevated plasma MDA relative to the non-diabetic controls. Urine 8-isoprostane and 8-OHdG in both diabetic mouse groups increased significantly. The urine oxidative stress markers in the severely hyperglycemic STZ mice were higher than those in the moderately hyperglycemic KKAy mice. Although GPx-1 and SOD-1 showed elevated mRNA expression in the KKAy mice in the kidney and heart, in the STZ mice they did not increase compared to the controls. The compensatory up-regulation of the mRNA expression of antioxidant enzymes may be impaired in the insulin-deficient severely hyperglycemic state. Topics: Animals; Base Sequence; Diabetes Complications; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dinoprost; Disease Models, Animal; DNA Primers; Gene Expression Regulation, Enzymologic; Glutathione Peroxidase; Insulin Resistance; Kidney; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Mutant Strains; Myocardium; Obesity; Superoxide Dismutase | 2005 |
Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential.
Apolipoprotein A-II (apoA-II), the second major high-density lipoprotein (HDL) apolipoprotein, has been linked to familial combined hyperlipidemia. Human apoA-II transgenic mice constitute an animal model for this proatherogenic disease. We studied the ability of human apoA-II transgenic mice HDL to protect against oxidative modification of apoB-containing lipoproteins. When challenged with an atherogenic diet, antigens related to low-density lipoprotein (LDL) oxidation were markedly increased in the aorta of 11.1 transgenic mice (high human apoA-II expressor). HDL from control mice and 11.1 transgenic mice were coincubated with autologous very LDL (VLDL) or LDL, or with human LDL under oxidative conditions. The degree of oxidative modification of apoB lipoproteins was then evaluated by measuring relative electrophoretic mobility, dichlorofluorescein fluorescence, 9- and 13-hydroxyoctadecadienoic acid content, and conjugated diene kinetics. In all these different approaches, and in contrast to control mice, HDL from 11.1 transgenic mice failed to protect LDL from oxidative modification. A decreased content of apoA-I, paraoxonase (PON1), and platelet-activated factor acetyl-hydrolase activities was found in HDL of 11.1 transgenic mice. Liver gene expression of these HDL-associated proteins did not differ from that of control mice. In contrast, incubation of isolated human apoA-II with control mouse plasma at 37 degrees C decreased PON1 activity and displaced the enzyme from HDL. Thus, overexpression of human apoA-II in mice impairs the ability of HDL to protect apoB-containing lipoproteins from oxidation. Further, the displacement of PON1 by apoA-II could explain in part why PON1 is mostly found in HDL particles with apoA-I and without apoA-II, as well as the poor antiatherogenic properties of apoA-II-rich HDL. Topics: 1-Alkyl-2-acetylglycerophosphocholine Esterase; Animals; Aorta; Aortic Diseases; Apolipoprotein A-I; Apolipoprotein A-II; Arteriosclerosis; Aryldialkylphosphatase; Cholesterol, HDL; Diet, Atherogenic; Dinoprost; Disease Models, Animal; Female; Gene Expression Regulation; Humans; Hyperlipoproteinemia Type II; Lipoproteins, HDL; Lipoproteins, LDL; Lipoproteins, VLDL; Liver; Male; Mice; Mice, Transgenic; Oxidation-Reduction; Recombinant Fusion Proteins; Thiobarbituric Acid Reactive Substances | 2004 |
ETA receptor blockade attenuates hypertension and decreases reactive oxygen species in ETB receptor-deficient rats.
We hypothesize that endothelin-A receptor stimulation contributes to the elevated blood pressure and superoxide production in endothelin-B receptor-deficient rats on a high salt diet. Experiments were conducted on homozygous endothelin-B-deficient (sl/sl) and wild-type rats (wt) fed a high salt diet (8% NaCl) for 3 weeks. Separate groups were given normal drinking water or water containing the endothelin-A receptor antagonist, ABT-627 (5 mg/kg per day; n = 8-9 in all groups). On a normal salt diet, (sl/sl) rats had a significantly elevated systolic blood pressure compared with wt (138 +/- 3 vs 117 +/- 4 mmHg, respectively; P < 0.05). High salt diet caused a significant increase in systolic blood pressure in (sl/sl) rats compared with wt (158 +/- 2 vs 138 +/- 3 mmHg, respectively; P < 0.05). Endothelin-A receptor blockade decreased systolic blood pressure in (sl/sl) rats on high salt (125 +/- 5 mmHg; P < 0.05 vs without antagonist) without affecting the systolic blood pressure in wt (119 +/- 4 mmHg). Aortic superoxide production (lucigenin chemiluminescence) and plasma 8-isoprostane were elevated in sl/sl rats and were significantly reduced by endothelin-A receptor blockade in sl/sl, but not in wt rats. These findings suggest that endothelin-1, through the endothelin-A receptor, contributes to salt-induced hypertension and vascular superoxide production in endothelin-B-deficient rats. Topics: Animals; Animals, Genetically Modified; Antihypertensive Agents; Aorta; Atrasentan; Blood Pressure; Dinoprost; Disease Models, Animal; Down-Regulation; Endothelin A Receptor Antagonists; Endothelins; Hypertension; Male; Pyrrolidines; Rats; Receptor, Endothelin A; Receptor, Endothelin B; Sodium Chloride, Dietary; Superoxides; Time Factors | 2004 |
Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.
In order to delineate mechanisms of noise-induced hearing loss, we assessed noise trauma and its pharmacological modulation in the guinea pig. Auditory threshold shifts (measured by auditory brainstem responses), hair cell loss and lipid peroxidation (8-isoprostane formation) were determined in the absence or presence of agents known to influence the formation or action of reactive oxygen species (ROS): the non-specific N-methyl-D-aspartate (NMDA) receptor antagonist (+)-MK-801, its inactive isomer (-)-MK-801, the selective NR1/2B NMDA receptor antagonist PD 174494, the nitric oxide synthase (NOS) inhibitor L-N(omega)-Nitroarginine methyl ester (L-NAME) and the anti-oxidant N-acetylcysteine (NAC). (+)-MK-801 and NAC attenuated threshold shifts and hair cell loss effectively while PD 174494 did so partially. L-NAME attenuated threshold shifts at 2 kHz but increased them at 20 kHz, and (-)-MK-801 was ineffective. Noise-induced elevation in 8-isoprostane in the cochlea was significantly attenuated by (+)-MK-801 and PD 174494 in the organ of Corti and modiolar core, by L-NAME in the lateral wall and modiolar core, and by NAC in all three regions. (-)-MK-801 did not influence noise-induced 8-isoprostane formation. There was a significant correlation between threshold shifts at 4 kHz, hair cell loss and the level of 8-isoprostane formed in the organ of Corti, but not in the lateral wall tissues. This finding suggests a causal relationship between ROS formation and functional and morphological damage. NMDA receptors and, to some extent, NOS may be involved in noise-induced ROS formation. The data also indicate that lipid peroxidation in the lateral wall tissues does not influence permanent threshold shifts. Topics: Acetylcysteine; Acoustic Stimulation; Animals; Auditory Threshold; Cell Count; Cochlea; Dinoprost; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Evoked Potentials, Auditory, Brain Stem; F2-Isoprostanes; Free Radical Scavengers; Guinea Pigs; Hair Cells, Auditory; Hearing Loss, Noise-Induced; Lipid Peroxidation; Male; NG-Nitroarginine Methyl Ester; Noise; Piperidines; Reactive Oxygen Species; Receptors, N-Methyl-D-Aspartate | 2003 |
Effect of losartan on oxidative stress-induced hypertension in Sprague-Dawley rats.
Hypertension induced by oxidative stress has been demonstrated in normal rats. In the current study, we investigated the effect of the oral AT(1) receptor blocker losartan (10 mmol/kg/day) on oxidative stress, induced by glutathione (GSH) depletion (using buthionine-sulfoximine, BSO, 30 mmol/L/day in the drinking water), in Sprague-Dawley rats.. Mean arterial pressure (MAP) was measured by tail-cuff plethysmography and the plasma levels of total 8-isoprostane, nitric oxide, prostacyclin, thromboxane A(2), angiotensin II, aldosterone, and aortic cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were determined by enzyme immunoassay. Plasma, heart, and kidney GSH were analyzed by high-performance liquid chromatography. Aortic and renal superoxide production was determined by fluorescence spectrometry.. In the BSO-treated group, MAP, angiotensin II, isoprostane, thromboxane A(2), and superoxide were elevated; whereas prostacyclin, GSH, cAMP, and cGMP were reduced, compared to control. Losartan alone reduced MAP, and increased renal GSH, plasma nitric oxide, angiotensin II, aldosterone, and aortic cGMP. When administered concurrently with BSO, losartan reversed the BSO-induced elevation of MAP, superoxide, and thromboxane A(2) as well as the reduction in prostacyclin and aortic cAMP levels, but did not significantly alter the reduction in GSH or the elevation in angiotensin II and aldosterone.. Losartan attenuates BSO-induced hypertension, which appears to be mediated, in part, by angiotensin II and the prostanoid endothelium-derived factors. Topics: Aldosterone; Angiotensin II; Animals; Antihypertensive Agents; Aorta; Biomarkers; Blood Pressure; Buthionine Sulfoximine; Cyclic AMP; Cyclic GMP; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; Epoprostenol; F2-Isoprostanes; Glutathione; Heart Rate; Hypertension; Kidney; Losartan; Male; Models, Cardiovascular; Nitric Oxide; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxides; Thromboxane A2; Treatment Outcome | 2003 |
Entacapone protects from angiotensin II-induced inflammation and renal injury.
Angiotensin II (Ang II)-induced renal damage is associated with perivascular inflammation and increased oxidative stress. We tested the hypothesis whether entacapone, a catechol-O-methyltransferase (COMT) inhibitor exerting antioxidative and anti-inflammatory properties, protects against the Ang II-induced inflammatory response and end-organ damage.. Samples from double-transgenic rats harbouring human renin and human angiotensinogen genes (dTGR) and normotensive Sprague-Dawley rats (SD) were assessed by light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and high pressure liquid chromatography. The effects of entacapone treatment for 3 weeks were examined in dTGR and SD.. Entacapone completely prevented cardiovascular mortality and decreased albuminuria by 85% in dTGR. Entacapone ameliorated Ang II-induced vascular and glomerular damage, leucocyte infiltration, and intercellular adhesion molecule-1 (ICAM-1) overexpression in the kidneys. Serum 8-isoprostane concentration, as well as renal nitrotyrosine and 8-hydroxydeoxyguanosine expressions, all markers of oxidative stress, were markedly increased in dTGR and normalized by entacapone. Entacapone also decreased p22phox mRNA expression in the kidney. COMT expression was increased by 500% locally in the renal vascular wall in dTGR; however, COMT activity in the whole kidney remained unchanged. Urinary dopamine excretion, a marker of renal dopaminergic tone, was decreased by 50% in untreated dTGR. Even though entacapone decreased renal COMT activity by 40%, the renal dopaminergic tone remained unchanged in entacapone-treated dTGR.. Our findings suggest that entacapone provides protection against Ang II-induced renal damage through antioxidative and anti-inflammatory mechanisms, rather than by COMT inhibition-induced changes in renal dopaminergic tone. Topics: Angiotensin II; Animals; Animals, Genetically Modified; Biomarkers; Blood Pressure; Cardiomegaly; Catechol O-Methyltransferase; Catechols; Creatinine; Dinoprost; Disease Models, Animal; Dopamine; Enzyme Inhibitors; Hypertension; Inflammation; Intercellular Adhesion Molecule-1; Kidney; Kidney Diseases; Leukocytes; Male; Models, Cardiovascular; Nitriles; Norepinephrine; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2003 |
Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes.
We examined whether xanthine oxidoreductase (XOR), a hypoxia-inducible enzyme capable of generating reactive oxygen species, is involved in the onset of angiotensin (Ang) II-induced vascular dysfunction in double-transgenic rats (dTGR) harboring human renin and human angiotensinogen genes. In 7-week-old hypertensive dTGR, the endothelium-mediated relaxation of noradrenaline (NA)-precontracted renal arterial rings to acetylcholine (ACh) in vitro was markedly impaired compared with Sprague Dawley rats. Preincubation with superoxide dismutase (SOD) improved the endothelium-dependent vascular relaxation, indicating that in dTGR, endothelial dysfunction is associated with increased superoxide formation. Preincubation with the XOR inhibitor oxypurinol also improved endothelium-dependent vascular relaxation. The endothelium-independent relaxation to sodium nitroprusside was similar in both strains. In dTGR, serum 8-isoprostaglandin F(2alpha), a vasoconstrictor and antinatriuretic arachidonic acid metabolite produced by oxidative stress, was increased by 100%, and the activity of XOR in the kidney was increased by 40%. Urinary nitrate plus nitrite (NO(x)) excretion, a marker of total body NO generation, was decreased by 85%. Contractile responses of renal arteries to Ang II, endothelin-1 (ET-1), and NA were decreased in dTGR, suggesting hypertension-associated generalized changes in the vascular function rather than a receptor-specific desensitization. Valsartan (30 mg/kg PO for 3 weeks) normalized blood pressure, endothelial dysfunction, and the contractile responses to ET-1 and NA. Valsartan also normalized serum 8-isoprostaglandin F(2alpha) levels, renal XOR activity, and, to a degree, NO(x) excretion. Thus, overproduction of Ang II in dTGR induces pronounced endothelial dysfunction, whereas the sensitivity of vascular smooth muscle cells to nitric oxide is unaltered. Ang II-induced endothelial dysfunction is associated with increased oxidative stress and vascular xanthine oxidase activity. Topics: Acetylcholine; Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Antihypertensive Agents; Dinoprost; Disease Models, Animal; Endothelium, Vascular; F2-Isoprostanes; Humans; Hypertension; Ketone Oxidoreductases; Male; Nitrates; Nitrites; Nitroprusside; Norepinephrine; Rats; Rats, Sprague-Dawley; Renal Artery; Renin; Superoxide Dismutase; Tetrazoles; Valine; Valsartan; Vasoconstrictor Agents; Vasodilation | 2001 |
Oxidative stress in a rat model of obesity-induced hypertension.
The mechanisms underlying the development of hypertension in obesity are not yet fully understood. We recently reported the development of hypertension in a rat model of diet-induced obesity. When Sprague-Dawley rats (n=60) are fed a moderately high fat diet (32 kcal% fat) for 10 to 16 weeks, approximately half of them develop obesity (obesity-prone [OP] group) and mild hypertension (158+/-3.4 mm Hg systolic pressure), whereas the other half (obesity-resistant [OR] group) maintains a body weight equivalent to that of a low fat control group and is normotensive (135.8+/-3.8 mm Hg). We examined the potential role of oxidative stress in the development of hypertension in this model. Lipid peroxides measured as thiobarbituric acid-reactive substances showed a significant increase in the LDL fraction of OP rats (2.8+/-0.32 nmol malondialdehyde/mg protein) compared with OR and control rats (0.9+/-0.3 nmol malondialdehyde/mg protein). Also, aortic and kidney thiobarbituric acid-reactive substances showed a significant (3- and 5- fold) increase in OP rats after 16 weeks of diet. In addition, superoxide generation by aortic rings, measured by lucigenin luminescence, showed a 2-fold increase in the OP group compared with both the OR and control groups. In addition, free isoprostane excretion and nitrotyrosine in the kidney showed an increase in OP rats only. The urine and plasma nitrate/nitrite measured by the LDH method showed a 1.8-fold decrease in OP rats compared with OR rats. However, endothelial NO synthase expression in the kidney cortex and medulla assessed by reverse transcriptase-polymerase chain reaction showed a strong increase in the OP rats versus OR and control rats (endothelial NO synthase/beta-actin ratio 1.3+/-0.04 in OP rats versus 0.44+/-0.02 in OR rats), suggesting a possible shift toward superoxide production by the enzyme. Collectively, the data show a decreased NO bioavailability in OP animals that is due in part to the increased oxidative stress. Topics: Animals; Aorta, Thoracic; Blood Pressure; Body Weight; Dietary Fats; Dinoprost; Disease Models, Animal; F2-Isoprostanes; Hyperlipidemias; Hypertension; Kidney Cortex; Kidney Medulla; Lipid Peroxides; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Obesity; Oxidative Stress; Rats; Rats, Sprague-Dawley; Renin; Thiobarbituric Acid Reactive Substances | 2001 |
In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFalpha and 8-isoprostane production induced by intracerebroventricular injection of LPS.
Fractalkine is a chemokine widely and constitutively expressed in the brain and, as suggested by in vitro studies, it is involved in brain inflammatory responses. In this study, we have investigated the in vivo anti-inflammatory potential of fractalkine in a model of neuroinflammation induced by intracerebroventricular injection of lipopolysaccharide (LPS) in rats. LPS induces a rapid and acute production of the pro-inflammatory cytokine, TNFalpha, in hippocampus and cerebrospinal fluid (CSF), and an increase of 8-isoprostane levels, a marker of oxidative stress, in hippocampus. Although intracerebroventricular injection of fractalkine has no effect on TNFalpha and 8-isoprostane production, neutralization of endogenous fractalkine within the brain with a specific anti-fractalkine antibody potentiates LPS effects. These data emphasize the involvement of constitutive brain fractalkine in the control of inflammatory reaction in CNS. Topics: Animals; Antibodies; Brain; Chemokine CX3CL1; Chemokines, CX3C; Chemokines, CXC; Dinoprost; Disease Models, Animal; Encephalitis; F2-Isoprostanes; Hippocampus; Injections, Intraventricular; Lipopolysaccharides; Male; Membrane Proteins; Oxidative Stress; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2001 |
Retinol palmitate counteracts oxidative injury during experimental septic shock.
Retinols seem to be of clinical importance in ameliorating the clinical consequences of septic shock. These beneficial effects of retinols are suggested to be due to an antioxidant property. The present study was undertaken in order to confirm or rule out such an effect of retinol palmitate (RP) in experimental septic shock by measuring F2-isoprostanes and a major prostaglandin F2 alpha metabolite as indicators of oxidative injury and inflammatory response, respectively.. Fourteen anaesthetised pigs were randomly given an injection of RP (2.300 IU x kg-1) or the corresponding volume of vehicle. All pigs received a continuous infusion of E. coli endotoxin (10 micrograms x kg-1 x h-1). Blood samples were analysed for lipid peroxidation products (8-iso-PGF2 alpha), indicating free radical induced oxidative injury and 15-keto-dihydro-PGF2 alpha indicating cyclooxygenase-mediated inflammatory response).. Significantly elevated levels of 8-iso-PGF2 alpha were seen at 3, 5 and 6 hours of endotoxaemia in the vehicle + endotoxin group as compared to RP + endotoxin group. Endotoxin induced cyclooxygenase-mediated inflammatory response was not affected by RP.. This study is the first one to show that RP counteracts oxidative injury rather than inflammatory response in experimental septic shock. These results may be of importance for the understanding of some beneficial effects of RP during endotoxaemia (i.e. improved systemic haemodynamics and reduced serum levels of endotoxin). Our results may explain the therapeutic effects of nutrients rich in caroten/retinols used in some clinical studies. Topics: Analysis of Variance; Animals; Antioxidants; Dinoprost; Disease Models, Animal; Diterpenes; Endotoxins; Escherichia coli Infections; F2-Isoprostanes; Female; Inflammation; Lipid Peroxidation; Male; Oxidative Stress; Radioimmunoassay; Random Allocation; Retinyl Esters; Shock, Septic; Swine; Vitamin A | 2001 |
Development of a novel biomarker of free radical damage in reperfusion injury after cardiac arrest.
In a porcine model of cardiopulmonary resuscitation (CPR), we investigated changes in the plasma levels of 8-iso-PGF(2alpha), a marker for oxidative injury, and 15-keto-dihydro-PGF(2alpha), an inflammatory response indicator during the post-resuscitation period after cardiac arrest. Twelve piglets were subjected to either 2 or 5 min (VF2 and VF5 group) of ventricular fibrillation (VF) followed by 5 min of closed-chest CPR. Six piglets without cardiac arrest were used as controls. In VF5 group, 8-iso-PGF(2alpha) in the jugular bulb plasma (draining the brain) increased four-fold. Jugular bulb 8-iso-PGF(2alpha) in the control group remained unchanged. The 15-keto-dihydro-PGF(2alpha) also increased four-fold in the VF5 group. Thus, 8-iso-PGF(2alpha) and 15-keto-dihydro-PGF(2alpha) measurements in jugular bulb plasma may be used as biomarkers for quantification of free radical catalyzed oxidative brain injury and inflammatory response in reperfusion injury. Topics: Animals; Biomarkers; Cardiopulmonary Resuscitation; Dinoprost; Disease Models, Animal; F2-Isoprostanes; Female; Free Radicals; Heart Arrest; Jugular Veins; Male; Molecular Structure; Myocardial Reperfusion Injury; Swine; Ventricular Fibrillation | 2000 |
Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia.
Homocysteine is a risk factor for the development of atherosclerosis and its thrombotic complications. We have employed an animal model to explore the hypothesis that an increase in reactive oxygen species and a subsequent loss of nitric oxide bioactivity contribute to endothelial dysfunction in mild hyperhomocysteinemia. We examined endothelial function and in vivo oxidant burden in mice heterozygous for a deletion in the cystathionine beta-synthase (CBS) gene, by studying isolated, precontracted aortic rings and mesenteric arterioles in situ. CBS(-/+) mice demonstrated impaired acetylcholine-induced aortic relaxation and a paradoxical vasoconstriction of mesenteric microvessels in response to superfusion of methacholine and bradykinin. Cyclic GMP accumulation following acetylcholine treatment was also impaired in isolated aortic segments from CBS(-/+) mice, but aortic relaxation and mesenteric arteriolar dilation in response to sodium nitroprusside were similar to wild-type. Plasma levels of 8-epi-PGF(2alpha) (8-IP) were somewhat increased in CBS(-/+) mice, but liver levels of 8-IP and phospholipid hydroperoxides, another marker of oxidative stress, were normal. Aortic tissue from CBS(-/+) mice also demonstrated greater superoxide production and greater immunostaining for 3-nitrotyrosine, particularly on the endothelial surface. Importantly, endothelial dysfunction appears early in CBS(-/+) mice in the absence of structural arterial abnormalities. Hence, mild hyperhomocysteinemia due to reduced CBS expression impairs endothelium-dependent vasodilation, likely due to impaired nitric oxide bioactivity, and increased oxidative stress apparently contributes to inactivating nitric oxide in chronic, mild hyperhomocysteinemia. Topics: Acetylcholine; Animals; Aorta; Arteriosclerosis; Cystathionine beta-Synthase; Dinoprost; Disease Models, Animal; Endothelium, Vascular; F2-Isoprostanes; Heterozygote; Humans; Hyperhomocysteinemia; In Vitro Techniques; Lipid Peroxides; Mice; Mice, Mutant Strains; Nitroprusside; Reactive Oxygen Species; Risk Factors; Thrombosis; Tyrosine; Vasodilation | 2000 |
Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates.
Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8-epi-prostaglandin F(2alpha), was increased at 6 and 24 h after traumatic brain injury. Furthermore, relative amounts of fluorescent end products of lipid peroxidation in brain extracts were increased at 6 and 24 h after trauma compared with sham-operated controls. The total antioxidant reserves of brain homogenates and water-soluble antioxidant reserves as well as tissue concentrations of ascorbate, GSH, and protein sulfhydryls were reduced after traumatic brain injury. A selective inhibitor of cyclooxygenase-2, SC 58125, prevented depletion of ascorbate and thiols, the two major water-soluble antioxidants in traumatized brain. Electron paramagnetic resonance (EPR) spectroscopy of rat cortex homogenates failed to detect any radical adducts with a spin trap, 5,5-dimethyl-1-pyrroline N:-oxide, but did detect ascorbate radical signals. The ascorbate radical EPR signals increased in brain homogenates derived from traumatized brain samples compared with sham-operated controls. These results along with detailed model experiments in vitro indicate that ascorbate is a major antioxidant in brain and that the EPR assay of ascorbate radicals may be used to monitor production of free radicals in brain tissue after traumatic brain injury. Topics: Animals; Antioxidants; Ascorbic Acid; Biomarkers; Brain Chemistry; Brain Injuries; Cerebral Cortex; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Dinoprost; Disease Models, Animal; Electron Spin Resonance Spectroscopy; F2-Isoprostanes; Free Radicals; Hippocampus; Isoenzymes; Male; Oxidation-Reduction; Oxidative Stress; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; Wounds, Nonpenetrating | 2000 |
Chronic aminoguanidine attenuates renal dysfunction and injury in aging rats.
We have previously shown that aging is associated with increased lipid peroxidation, reductions in renal function, and increased glomerular sclerosis. The mechanism(s) responsible for these age-related changes are not clear. The purpose of the present studies was to determine if there was an increase in inducible nitric oxide synthase (iNOS) with aging, and if so, whether inhibition of iNOS would prevent aging injury by preventing free radical-mediated lipid peroxidation. iNOS protein expression in the kidney increased by approximately 90% by 24 months. Inhibition of iNOS by aminoguanidine (0.1% in drinking water) for 9 months, beginning at 13 months of age, reduced blood pressure, improved glomerular filtration rate by 70%, and renal plasma flow by 40%, whereas glomerular sclerosis was considerably reduced. Renal F2-isoprostanes and malondialdehyde levels, markers of oxidative stress and lipid peroxidation, were not reduced by aminoguanidine. Aminoguanidine also did not attenuate immunostaining for advanced glycosylation end products (AGE) in the kidneys. These findings suggest that aminoguanidine attenuates aging renal dysfunction by inhibiting a pathophysiologic function of iNOS that is independent of free radical-mediated lipid peroxidation or significant effects on AGE deposition. Topics: Aging; Animals; Biomarkers; Blotting, Western; Dinoprost; Disease Models, Animal; Enzyme Inhibitors; F2-Isoprostanes; Follow-Up Studies; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glycation End Products, Advanced; Guanidines; Kidney; Lipid Peroxidation; Male; Malondialdehyde; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxidative Stress; Rats; Rats, Sprague-Dawley; Renal Plasma Flow | 1999 |
In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation.
We hypothesized that endotoxin injection in rats would stimulate in vivo nuclear factor-kappa B (NF-kappa B) activation in lung tissue and that antioxidant treatment before endotoxin injection would attenuate endotoxin-induced NF-kappa B activation, chemokine gene expression, and neutrophilic lung inflammation. We studied NF-kappa B activation in rat lung tissue following a single i.p. injection of endotoxin (6 mg/kg). After in vivo endotoxin treatment, lung NF-kappa B activation peaked at 2 h and temporally correlated with the expression of cytokine-induced neutrophil chemoattractant mRNA in lung tissue. Treatment with the antioxidant N-acetylcysteine (NAC) 1 h before endotoxin resulted in decreased lung NF-kappa B activation in a dose-dependent manner (from 200-1000 mg/kg) and diminished cytokine-induced neutrophil chemoattractant mRNA expression in lung tissue. Treatment with NAC significantly suppressed endotoxin-induced neutrophilic alveolitis. The average total lung lavage neutrophil count was 5.5 x 10(6) with endotoxin treatment vs 0.9 x 10(6) with NAC treatment before endotoxin. The NF-kappa B pathway represents an attractive therapeutic target for strategies to control neutrophilic inflammation and lung injury. Topics: Acetylcysteine; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Base Sequence; Chemokines, CXC; Chemotactic Factors; Chemotaxis, Leukocyte; Dinoprost; Disease Models, Animal; Drug Evaluation, Preclinical; Endotoxins; F2-Isoprostanes; Gene Expression Regulation; Glutathione; Growth Substances; Inflammation; Intercellular Signaling Peptides and Proteins; Leukocyte Count; Lung; Lung Diseases; Male; Molecular Sequence Data; Neutrophils; NF-kappa B; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome; RNA, Messenger; Sepsis | 1996 |
Cimetidine prevents alcoholic hepatic injury in the intragastric feeding rat model.
Cytochrome P450 induction is believed to be important in the pathogenesis of alcoholic hepatic disease. Because cimetidine is a general inhibitor of cytochrome P450 enzymes, it was hypothesized that it could be useful in preventing alcoholic hepatic injury. An intragastric feeding model was used these studies. Experimental animals were divided into groups of four to five rats/group and fed the following diets: corn oil+dextrose, corn oil+ethanol (CE) and corn oil+ethanol+cimetidine (250 mg kg-1 day-1) (CEC). The rats in each group were sacrificed at the following time intervals: 2 weeks, 1 month and 2 months. For each animal, the severity of the pathologic findings and relative protein levels of cytochromes P450 2E1, 2B and 4A were measured. In addition, plasma levels of thromboxane B2, 6-ketoprostaglandin F1 alpha and 8-isoprostane were also measured. The most significant finding was that cimetidine completely prevented alcoholic hepatic injury in this model system. The pathologic scores (an indication of the severity of injury) were significantly lower in the CEC groups compared with the CE group. There was however, no significant difference in cytochrome P450 2E1, 2B or 4A protein levels between CE and CEC groups. Thromboxane B2 and 8-isoprostane levels were significantly lower and 6-ketoprostaglandin F1 alpha, significantly higher in the CEC group than in the CE group. These results indicate that possible mechanisms involved in the protective action of cimetidine include inhibition of thromboxane production and lipid peroxidation. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arachidonic Acid; Arachidonic Acids; Cimetidine; Cytochrome P-450 Enzyme System; Dinoprost; Disease Models, Animal; Endotoxins; F2-Isoprostanes; Lipid Peroxidation; Liver Diseases, Alcoholic; Male; Rats; Rats, Wistar; Thromboxane B2 | 1994 |