8-epi-prostaglandin-f2alpha has been researched along with Dermatitis--Atopic* in 3 studies
3 other study(ies) available for 8-epi-prostaglandin-f2alpha and Dermatitis--Atopic
Article | Year |
---|---|
Markers of oxidative stress are increased in exhaled breath condensates of children with atopic dermatitis.
Airway inflammation may be present in subjects affected by atopic dermatitis (AD) but still without asthma symptoms. Exhaled breath condensate (EBC) reflects the composition of bronchoalveolar extracellular lining fluid that contains a large number of mediators of airway inflammation and oxidative damage.. We assessed inflammatory markers in the EBC of patients with AD. Fifty-six children (34 girls and 22 boys) were enrolled: 33 affected by AD and 23 healthy controls.. EBC was collected using a condenser device. We measured EBC pH and concentrations of leukotriene B4 (LTB4), 8-isoprostane, H(2) O(2) , malondialdehyde and 4-hydroxynoneal. Respiratory resistance was also evaluated.. EBC pH in patients with AD was significantly lower than in healthy children, median (range) being 8·02 (7·94-8·12) in AD vs. 8·11 (8·05-8·16) (P = 0·02). The values of exhaled 8-isoprostane and LTB4 were significantly increased in subjects with AD compared with normal controls (P < 0·01 and P < 0·001, respectively). There was increased 4-hydroxynoneal in patients with AD but this did not reach statistical significance. Evaluating respiratory resistance, no bronchoreversibility was demonstrated in the children with AD.. pH, LTB4 and 8-isoprostane in EBC could be sensitive markers of airway inflammation in children with AD. Prospective studies would be of interest to evaluate if airway inflammation, not yet clinically evident, could predict the development of asthma later in life in children with AD. Topics: Airway Resistance; Aldehydes; Biomarkers; Breath Tests; Case-Control Studies; Child; Child, Preschool; Dermatitis, Atopic; Dinoprost; Female; Humans; Hydrogen-Ion Concentration; Leukotriene B4; Male; Malondialdehyde; Oxidative Stress | 2012 |
Measurement of nitric oxide and 8-isoprostane in exhaled breath of children with atopic eczema.
Children with atopic eczema (AE) are at risk of developing asthma. Airway inflammation has been shown to be present before the onset of clinical asthma. Increased exhalation (forced expiration; FE) of nitric oxide (FE(NO)) and 8-isoprostane seems to be a feature of bronchial inflammation in people with asthma.. To determine whether the exhalation of these two molecules is increased in children with eczema, even in the absence of overt asthma.. In total, 21 children with AE were recruited and compared with healthy controls. A questionnaire was completed to identify respiratory symptoms compatible with asthma. The severity of AE was graded clinically. Spirometry, FE(NO) measurements and exhaled breath condensate collection for 8-isoprostane were performed.. The mean level of 8-isoprostane was similar for children with AE (2.33 +/- 4.76 pg/mL) and controls (3.37 +/- 3.43). FE(NO) was increased in children with AE (mean 64.97 parts per billion) compared with the normal range, even in the absence of respiratory symptoms and in the presence of normal lung function.. FE(NO) but not 8-isoprostane levels in exhaled breath condensate are higher in children with AE without asthma. Our finding may indicate a predictive role for FE(NO) for the development of asthma. Topics: Adolescent; Asthma; Biomarkers; Breath Tests; Child; Dermatitis, Atopic; Dinoprost; Female; Humans; Male; Nitric Oxide; Predictive Value of Tests; Pulmonary Ventilation | 2009 |
Inverse association between Chlamydia pneumoniae respiratory tract infection and initiation of asthma or allergic rhinitis in children.
To evaluate the role of Chlamydia pneumoniae respiratory tract infection on pediatric asthma, allergic rhinitis or atopic eczema initiation, children of three age groups (n=1211) were prospectively studied for a C. pneumoniae infection using throat swabs and polymerase chain reaction (PCR) with enzyme immunoassay (EIA) detection. Infected children (study group, SG) were examined monthly until the agent could not be detected, quantifying persistent infection. They were compared with randomly selected, non-infected children without asthma matched for age, gender and origin (control group, CG) regarding lung function and inflammatory parameters as well as initiation of allergic diseases judged by family doctor diagnosis after, in median, 22 months. At the first follow-up examination, SG children revealed a higher leukotriene B4 (median 36 pg/ml vs. 19, p=0.04) and 8-isoprostane (median 15 pg/ml vs. 12, p=0.04) in breath condensate characterizing neutrophil, agent-related inflammation and oxidative stress in the lower airways. Cysteinyl leukotrienes, important in acute allergic inflammation, were without difference. Local, anti C. pneumoniae secretory immunoglobulin A antibodies were higher in children after C. pneumoniae infection (optical density median 0.7 vs. 0.4, p=0.001) confirming PCR-EIA results. At the final examination, there was no difference in pathological lung function tests, parameters of exhaled breath condensate or eosinophilia of the nasal mucosa. Incidence of asthma (0/55 vs. 5/54, p=0.03) and allergic rhinitis [3/53 vs. 10/52, p=0.04, odds ratio and 95% confidence interval-OR 0.25 (0.06;0.98)] as well as prevalence of asthma [1/56 vs. 9/58, p=0.02, OR 0.1 (0.01;0.81)] and allergic rhinitis [6/56 vs. 16/58, p=0.03, OR 0.32 (0.11;0.88)] were lower in the SG children. There was no association in atopic eczema. Three children with persistent infection revealed a slightly higher incidence in allergic rhinitis without significance than those with single C. pneumoniae detection (1/3 vs. 2/50), however, not to the CG. In conclusion a C. pneumoniae upper respiratory tract infection may be regarded as a protective factor for childhood asthma or allergic rhinitis in a population of kindergarten and school-age children. Topics: Adolescent; Animals; Asthma; Child; Child, Preschool; Chlamydophila Infections; Chlamydophila pneumoniae; Cohort Studies; Dermatitis, Atopic; Dinoprost; Female; Humans; Immunoenzyme Techniques; Immunoglobulin A; Leukotriene B4; Male; Pneumonia, Bacterial; Polymerase Chain Reaction; Respiratory Function Tests; Rhinitis | 2005 |